549 resultados para CONGESTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hazardous materials are substances that, if not regulated, can pose a threat to human populations and their environmental health, safety or property when transported in commerce. About 1.5 million tons of hazardous material shipments are transported by truck in the US annually, with a steady increase of approximately 5% per year. The objective of this study was to develop a routing tool for hazardous material transport in order to facilitate reduced environmental impacts and less transportation difficulties, yet would also find paths that were still compelling for the shipping carriers as a matter of trucking cost. The study started with identification of inhalation hazard impact zones and explosion protective areas around the location of hypothetical hazardous material releases, considering different parameters (i.e., chemicals characteristics, release quantities, atmospheric condition, etc.). Results showed that depending on the quantity of release, chemical, and atmospheric stability (a function of wind speed, meteorology, sky cover, time and location of accidents, etc.) the consequence of these incidents can differ. The study was extended by selection of other evaluation criteria for further investigation because health risk as an evaluation criterion would not be the only concern in selection of routes. Transportation difficulties (i.e., road blockage and congestion) were incorporated as important factor due to their indirect impact/cost on the users of transportation networks. Trucking costs were also considered as one of the primary criteria in selection of hazardous material paths; otherwise the suggested routes would have not been convincing for the shipping companies. The last but not least criterion was proximity of public places to the routes. The approach evolved from a simple framework to a complicated and efficient GIS-based tool able to investigate transportation networks of any given study area, and capable of generating best routing options for cargos. The suggested tool uses a multi-criteria-decision-making method, which considers the priorities of the decision makers in choosing the cargo routes. Comparison of the routing options based on each criterion and also the overall suitableness of the path in regards to all the criteria (using a multi-criteria-decision-making method) showed that using similar tools as the one proposed by this study can provide decision makers insights in the area of hazardous material transport. This tool shows the probable consequences of considering each path in a very easily understandable way; in the formats of maps and tables, which makes the tradeoffs of costs and risks considerably simpler, as in some cases slightly compromising on trucking cost may drastically decrease the probable health risk and/or traffic difficulties. This will not only be rewarding to the community by making cities safer places to live, but also can be beneficial to shipping companies by allowing them to advertise as environmental friendly conveyors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Article

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South Carolina Statewide Transportation Improvement Program is the six-year transportation improvement program for all projects and program areas receiving federal funding, including pavements, bridges, upgrades, freight, safety, congestion mitigation and air quality, transportation alternatives program, railroad crossings, planning, State Infrastructure Bank payments, preventative maintenance and operations, and public transportation. The STIP is formatted to include summaries of statewide programming, as well as project information by county. In addition, regional project tables are included to account for multi-jurisdictional projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antecedentes: La rinitis alérgica es una enfermedad secundaria a la exposición a alérgenos con una inflamación de las mucosas nasales mediadas por la Ig-E, tiene síntomas como estornudos, obstrucción nasal, prurito nasal y descarga nasal. Los tratamientos de primera línea son los antihistamínicos orales y Montelukast los cuales se dan como monoterapia, existe la combinación de los dos tratamientos en el mercado, sin embargo se duda de su eficacia combinada para tratar los síntomas nasales. Objetivo: Determinar la eficacia y seguridad del tratamiento combinado de Montelukast con Antihistamínicos orales en el tratamiento de Rinitis Alérgica. Metodología: Se realizó una revisión sistemática de la literatura con metaanálisis de los estudios clínicos que evaluaron la eficacia de los antihistamínicos orales y Montelukast tanto en monoterapia como en terapia combinada. Resultados: De 795 artículos publicados hasta febrero 2016 identificados en las bases de datos electrónicas y literatura gris, se seleccionaron por consenso nueve estudios. Los estudios mostraron una reducción significativa del TNSS de -2,61 (-3.32 a -1,90) de la terapia combinada de Montelukast más antihistamínicos orales en comparación con la monoterapia de cada uno de ellos. Los estudios reportaron que la seguridad de la terapia combinada de Montelukast más antihistamínicos orales no fue diferente a la monoterapia. Conclusiones: La terapia combinada de Montelukast con antihistamínico redujo el puntaje de TNSS en -2,61 (-3.32 a -1,90) por lo que es eficaz y seguro en pacientes con rinitis alérgica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of airport airside operations is often compromised by unplanned disruptive events of different kinds, such as bad weather, strikes or technical failures, which negatively influence the punctuality and regularity of operations, causing serious delays and unexpected congestion. They may provoke important impacts and economic losses on passengers, airlines and airport operators, and consequences may propagate in the air network throughout different airports. In order to identify strategies to cope with such events and minimize their impacts, it is crucial to understand how disruptive events affect airports’ performance. The research field related with the risk of severe air transport network disruptions and their impact on society is related to the concepts of vulnerability and resilience. The main objective of this project is to provide a framework that allows to evaluate performance losses and consequences due to unexpected disruptions affecting airport airside operations, supporting the development of a methodology for estimating vulnerability and resilience indicators for airport airside operations. The methodology proposed comprises three phases. In the first phase, airside operations are modelled in both the baseline and disrupted scenarios. The model includes all main airside processes and takes into consideration the uncertainties and dynamics of the system. In the second phase, the model is implemented by using a generic simulation software, AnyLogic. Vulnerability is evaluated by taking into consideration the costs related to flight delays, cancellations and diversions; resilience is determined as a function of the loss of capacity during the entire period of disruption. In the third phase, a Bayesian Network is built in which uncertain variables refer to airport characteristics and disruption type. The Bayesian Network expresses the conditional dependence among these variables and allows to predict the impacts of disruptions on an airside system, determining the elements which influence the system resilience the most.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematical models and the involved methods applied to real contexts are essential tools for designing and evaluating solutions concerning physical elements and/or organizational components of transportation systems. To deal with this, the systems engineering approach is used, which considers the relationships among the transportation system elements and their performances. This approach allows quantifying the effects of transportation projects by taking into account the intrinsic complexity of the transportation system and then assessing the effects of solutions to solve – or mitigate – transportation problems. This thesis focuses on the application of the transport system engineering approach to a real city – Bologna, in northern Italy – in order to: 1. simulate the current transportation system conditions (status quo); 2. compare and assess the results obtained by two different approaches for simulating the link traffic flows on the road transportation network and their related impacts (externalities) 3. identify potential solutions to solve critical aspects, particularly in terms of traffic flow congestion and related environmental impacts (findings)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.