941 resultados para Bayesian rationality
Resumo:
Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.
Resumo:
Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V -structures in the predictor sub-graph, we are also able to prove that this family of polynomials does indeed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure.
Resumo:
Acknowledgment This research is supported by an award made by the RCUK Digital Economy program to the University of Aberdeen’s dot.rural Digital Economy Hub (ref. EP/G066051/1).
Resumo:
In this paper, we propose two Bayesian methods for detecting and grouping junctions. Our junction detection method evolves from the Kona approach, and it is based on a competitive greedy procedure inspired in the region competition method. Then, junction grouping is accomplished by finding connecting paths between pairs of junctions. Path searching is performed by applying a Bayesian A* algorithm that has been recently proposed. Both methods are efficient and robust, and they are tested with synthetic and real images.
Resumo:
Background: Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods: It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results: In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion: This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.
Resumo:
Thesis (Ph. D.)--University of California, 1912.
Resumo:
Performing organization: Dept. of Statistics, University of Michigan.
Resumo:
Performing organization: Dept. of Statistics, University of Michigan.
Resumo:
"Performing organization: Oklahoma State University, College of Business Administration , Stillwater."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The founding of new populations by small numbers of colonists has been considered a potentially important mechanism promoting evolutionary change in island populations. Colonizing species, such as members of the avian species complex Zosterops lateralis, have been used to support this idea. A large amount of background information on recent colonization history is available for one Zosterops subspecies, Z. lateralis lateralis, providing the opportunity to reconstruct the population dynamics of its colonization sequence. We used a Bayesian approach to combine historical and demographic information available on Z. l. lateralis with genotypic data from six microsatellite loci, and a rejection algorithm to make simultaneous inferences on the demographic parameters describing the recent colonization history of this subspecies in four southwest Pacific islands. Demographic models assuming mutation–drift equilibrium or a large number of founders were better supported than models assuming founder events for three of four recently colonized island populations. Posterior distributions of demographic parameters supported (i) a large stable effective population size of several thousands individuals with point estimates around 4000–5000; (ii) a founder event of very low intensity with a large effective number of founders around 150–200 individuals for each island in three of four islands, suggesting the colonization of those islands by one flock of large size or several flocks of average size; and (iii) a founder event of higher intensity on Norfolk Island with an effective number of founders around 20 individuals, suggesting colonization by a single flock of moderate size. Our inferences on demographic parameters, especially those on the number of founders, were relatively insensitive to the precise choice of prior distributions for microsatellite mutation processes and demographic parameters, suggesting that our analysis provides a robust description of the recent colonization history of the subspecies.
Resumo:
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.