999 resultados para Bacterial decay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The gastrointestinal microbiota is considered important in inflammatory bowel disease (IBD) pathogenesis. Discoveries from established disease cohorts report reduced bacterial diversity, changes in bacterial composition, and a protective role for Faecalibacterium prausnitzii in Crohn's disease (CD). The majority of studies to date are however potentially confounded by the effect of treatment and a reliance on established rather than de-novo disease.

METHODS: Microbial changes at diagnosis were examined by biopsying the colonic mucosa of 37 children: 25 with newly presenting, untreated IBD with active colitis (13 CD and 12 ulcerative colitis (UC)), and 12 pediatric controls with a macroscopically and microscopically normal colon. We utilized a dual-methodology approach with pyrosequencing (threshold >10,000 reads) and confirmatory real-time PCR (RT-PCR).

RESULTS: Threshold pyrosequencing output was obtained on 34 subjects (11 CD, 11 UC, 12 controls). No significant changes were noted at phylum level among the Bacteroidetes, Firmicutes, or Proteobacteria. A significant reduction in bacterial alpha-diversity was noted in CD vs. controls by three methods (Shannon, Simpson, and phylogenetic diversity) but not in UC vs. controls. An increase in Faecalibacterium was observed in CD compared with controls by pyrosequencing (mean 16.7% vs. 9.1% of reads, P = 0.02) and replicated by specific F. prausnitzii RT-PCR (36.0% vs. 19.0% of total bacteria, P = 0.02). No disease-specific clustering was evident on principal components analysis.

CONCLUSIONS: Our results offer a comprehensive examination of the IBD mucosal microbiota at diagnosis, unaffected by therapeutic confounders or changes over time. Our results challenge the current model of a protective role for F. prausnitzii in CD, suggesting a more dynamic role for this organism than previously described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have made a comparison of (a) different surface chemistries of surface plasmon resonance (SPR) sensor chips (such as carboxymethylated dextran and carboxymethylated C1) and (b) of different assay formats (direct, sandwich and subtractive immunoassay) in order to improve the sensitivity of the determination of the model bacteria Acidovorax avenae subsp. citrulli (Aac). The use of the carboxymethylated sensor chip C1 resulted in a better sensitivity than that of carboxymethylated dextran CM5 in all the assay formats. The direct assay format, in turn, exhibits the best sensitivity. Thus, the combination of a carboxymethylated sensor chip C1 with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6x106 CFU mL-1. This SPR immunosensor was applied to the detection of Aac in watermelon leaf extracts spiked with the bacteria, and the lower LOD is 2.2x107 CFU mL-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Bacterial pneumonia is the most common infectious cause of death worldwide and treatment is increasingly hampered by antibiotic resistance. Mesenchymal stem cells (MSCs) have been demonstrated to provide protection against acute inflammatory lung injury; however, their potential therapeutic role in the setting of bacterial pneumonia has not been well studied.

Objective: This study focused on testing the therapeutic and mechanistic effects of MSCs in a mouse model of Gram-negative pneumonia.

Methods and results: Syngeneic MSCs from wild-type mice were isolated and administered via the intratracheal route to mice 4 h after the mice were infected with Escherichia coli. 3T3 fibroblasts and phosphate-buffered saline (PBS) were used as controls for all in vivo experiments. Survival, lung injury, bacterial counts and indices of inflammation were measured in each treatment group. Treatment with wild-type MSCs improved 48 h survival (MSC, 55%; 3T3, 8%; PBS, 0%; p<0.05 for MSC vs 3T3 and PBS groups) and lung injury compared with control mice. In addition, wild-type MSCs enhanced bacterial clearance from the alveolar space as early as 4 h after administration, an effect that was not observed with the other treatment groups. The antibacterial effect with MSCs was due, in part, to their upregulation of the antibacterial protein lipocalin 2.

Conclusions: Treatment with MSCs enhanced survival and bacterial clearance in a mouse model of Gram-negative pneumonia. The bacterial clearance effect was due, in part, to the upregulation of lipocalin 2 production by MSCs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human respiratory tract of individuals with normal lung function maintains a fine-tuned balance, being asymptomatically colonised by the normal microbiota in the upper airways and sterile in the lower tract. This equilibrium may be disrupted by the exposure to insults such as cigarette smoke. In the respiratory tract, the complex and noxious nature of inhaled cigarette smoke alters host-microorganisminteraction dynamics at all anatomical levels, causing infections in many cases. Moreover, continuous exposure to cigarette smoke itself causes deleterious effects on the host that can trigger the development of chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and lung cancer. COPD is an irreversible airflow obstruction associated with emphysema, fibrosis, mucus hypersecretion and persistent colonisation of the lower airways by opportunistic pathogens. COPD patients keep a stable (without exacerbation) but progressively worsening condition and suffer periodic exacerbations caused, in most cases, by infections. Although smoking and smoking-associated diseases are associated with a high risk of infection, most therapies aim to reduce inflammatory parameters, but do not necessarily take into account the presence of persistent colonisers. The effect of cigarette smoke on host-pathogen interaction dynamics in the respiratory tract, together with current and novel therapies, is discussed. Copyright©ERS 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis. © 2013 March et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, beta-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is important for the regulation of a number of diverse biological processes, including vascular tone, neurotransmission, inflammatory cell responsiveness, defence against invading pathogens and wound healing. Transition metal exchanged zeolites are nanoporous materials with high-capacity storage properties for gases such as NO. The NO stores are liberated upon contact with aqueous environments, thereby making them ideal candidates for use in biological and clinical settings. Here, we demonstrate the NO release capacity and powerful bactericidal properties of a novel NO-storing Zn2+-exchanged zeolite material at a 50 wt.% composition in a polytetrafluoroethylene polymer. Further to our published data showing the anti-thrombotic effects of a similar NO-loaded zeolite, this study demonstrates the antibacterial properties of NO-releasing zeolites against clinically relevant strains of bacteria, namely Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Clostridium difficile. Thus our study highlights the potential of NO-loaded zeolites as biocompatible medical device coatings with anti-infective properties. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moisture is a well documented, and crucial, control on the nature of stone decay. The term time of wetness has frequently been adopted to describe how long a stone block is wet, with a view to understanding the impact of this on decay processes. Although this term has proved conceptually useful, it has been used in different ways, by different groups to mean mean quite different things. For example, the time of wetness for a stone block surface (the traditional understanding) may be quite different from that of a block interior, controlled by the different dynamics of wetting and drying in those zones. Thus, surface wetting will occur regularly (sometimes swiftly followed by drying, depending on the time of year), with block interior wetting requiring the accumulation of surface moisture to penetrate to depth (more likely in autumn and winter months), and drying out much more slowly. This relatively new but important perspective, framed in the context of climate change, is crucial to understanding the length of time stone may remain damp at depth following a period of prolonged precipitation. The nature and speed of drying is also relevant in quantifying time of wetness of both surfaces and the interior of building stones.
These ideas related to time of wetness have implications for decay processes, specifically how a prolonged time of deep wetness may re-focus the emphasis of salt weathering in natural building stones toward chemical action. Literature on chemical change is discussed, suggesting that chemical change occurring during periods of prolonged wetness is likely to be significant in itself, with implications for weakening the stone (in terms of, for example, cement dissolution or grain boundary weakening) and exacerbating physical damage from salt crystallisation when blocks finally dry out.



Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.