889 resultados para Artificial intelligence -- Computer programs
Resumo:
The purpose of this online course is to ensure new nursing graduate students know how to use computer technologies required to complete academic and research activities. Powerful computers, high speed internet, digitalized resources and databases are widely available in educational institutes. New renovation and updates are being released at faster pace than ever. All these developments are necessary for a student to utilize computer programs and synthesize large amount of data in a limited time for any given academic research project. [See PDF for complete abstract]
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.
Resumo:
Our research project develops an intranet search engine with concept- browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text ana- lytics engine extracts knowledge structures from data inductively, and the en- terprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data rec- ords. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept- browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.
Resumo:
Individuals with intellectual disabilities (ID) often struggle with learning how to read. Reading difficulties seem to be the most common secondary condition of ID. Only one in five children with mild or moderate ID achieves even minimal literacy skills. However, literacy education for children and adolescents with ID has been largely overlooked by researchers and educators. While there is little research on reading of children with ID, many training studies have been conducted with other populations with reading difficulties. The most common approach of acquiring literacy skills consists of sophisticated programs that train phonological skills and auditory perception. Only few studies investigated the influence of implicit learning on literacy skills. Implicit learning processes seem to be largely independent of age and IQ. Children are sensitive to the statistics of their learning environment. By frequent word reading they acquire implicit knowledge about the frequency of single letters and letter patterns in written words. Additionally, semantic connections not only improve the word understanding, but also facilitate storage of words in memory. Advances in communication technology have introduced new possibilities for remediating literacy skills. Computers can provide training material in attractive ways, for example through animations and immediate feedback .These opportunities can scaffold and support attention processes central to learning. Thus, the aim of this intervention study was to develop and implement a computer based word-picture training, which is based on statistical and semantic learning, and to examine the training effects on reading, spelling and attention in children and adolescents (9-16 years) diagnosed with mental retardation (general IQ 74). Fifty children participated in four to five weekly training sessions of 15-20 minutes over 4 weeks, and completed assessments of attention, reading, spelling, short-term memory and fluid intelligence before and after training. After a first assessment (T1), the entire sample was divided in a training group (group A) and a waiting control group (group B). After 4 weeks of training with group A, a second assessment (T2) was administered with both training groups. Afterwards, group B was trained for 4 weeks, before a last assessment (T3) was carried out in both groups. Overall, the results showed that the word-picture training led to substantial gains on word decoding and attention for both training groups. These effects were preserved six weeks later (group A). There was also a clear tendency of improvement in spelling after training for both groups, although the effect did not reach significance. These findings highlight the fact that an implicit statistical learning training in a playful way by motivating computer programs can not only promote reading development, but also attention in children with intellectual disabilities.
Resumo:
The usual Skolemization procedure, which removes strong quantifiers by introducing new function symbols, is in general unsound for first-order substructural logics defined based on classes of complete residuated lattices. However, it is shown here (following similar ideas of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-order substructural logics with a semantics satisfying certain witnessing conditions admit a “parallel” Skolemization procedure where a strong quantifier is removed by introducing a finite disjunction or conjunction (as appropriate) of formulas with multiple new function symbols. These logics typically lack equivalent prenex forms. Also, semantic consequence does not in general reduce to satisfiability. The Skolemization theorems presented here therefore take various forms, applying to the left or right of the consequence relation, and to all formulas or only prenex formulas.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
Diabetes is the most common disease nowadays in all populations and in all age groups. Different techniques of artificial intelligence has been applied to diabetes problem. This research proposed the artificial metaplasticity on multilayer perceptron (AMMLP) as prediction model for prediction of diabetes. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with other algorithms, recently proposed by other researchers, that were applied to the same database. The best result obtained so far with the AMMLP algorithm is 89.93%
Resumo:
This work presents a method to detect Microcalcifications in Regions of Interest from digitized mammograms. The method is based mainly on the combination of Image Processing, Pattern Recognition and Artificial Intelligence. The Top-Hat transform is a technique based on mathematical morphology operations that, in this work is used to perform contrast enhancement of microcalcifications in the region of interest. In order to find more or less homogeneous regions in the image, we apply a novel image sub-segmentation technique based on Possibilistic Fuzzy c-Means clustering algorithm. From the original region of interest we extract two window-based features, Mean and Deviation Standard, which will be used in a classifier based on a Artificial Neural Network in order to identify microcalcifications. Our results show that the proposed method is a good alternative in the stage of microcalcifications detection, because this stage is an important part of the early Breast Cancer detection
Resumo:
sharedcircuitmodels is presented in this work. The sharedcircuitsmodelapproach of sociocognitivecapacities recently proposed by Hurley in The sharedcircuitsmodel (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1) (2008) 1–22 is enriched and improved in this work. A five-layer computational architecture for designing artificialcognitivecontrolsystems is proposed on the basis of a modified sharedcircuitsmodel for emulating sociocognitive experiences such as imitation, deliberation, and mindreading. In order to show the enormous potential of this approach, a simplified implementation is applied to a case study. An artificialcognitivecontrolsystem is applied for controlling force in a manufacturing process that demonstrates the suitability of the suggested approach
Resumo:
This paper describes the architecture of a computer system conceived as an intelligent assistant for public transport management. The goal of the system is to help operators of a control center in making strategic decisions about how to solve problems of a fleet of buses in an urban network. The system uses artificial intelligence techniques to simulate the decision processes. In particular, a complex knowledge model has been designed by using advanced knowledge engineering methods that integrates three main tasks: diagnosis, prediction and planning. Finally, the paper describes two particular applications developed following this architecture for the cities of Torino (Italy) and Vitoria (Spain).
Resumo:
In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certifícate (or proof). The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both to prove programs correct and to replace a costly verification process by an efñcient checking procedure on the consumer side. In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argüe that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safety policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the área of mobile code safety. We have implemented and benchmarked ACC within the Ciao system preprocessor. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable.