847 resultados para Architecture and climate
Resumo:
∗ Thematic Harmonisation in Electrical and Information EngineeRing in Europe,Project Nr. 10063-CP-1-2000-1-PT-ERASMUS-ETNE.
Resumo:
Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.
Resumo:
Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^
Resumo:
The objective of this study was to investigate the relationship of organizational culture and organizational climate on participant perceptions of collaborative capacity for planning, within the context of the Florida School Readiness Coalitions (FSRCs). Three hypotheses were proposed for study: First, that organizational culture would be correlated to organizational climate; second, that organizational culture would be correlated to collaborative capacity for planning; and the third that organizational climate would be correlated to collaborative capacity for planning. ^ A cross-sectional survey research design was used to obtain data from participants in 25 Florida School Readiness Coalitions. Pearson product-moment correlations were used to examine the association between the dependent variable, collaborative capacity for planning, and the independent variables, organizational culture and climate. Bivariate analyses revealed a significant level of association for five culture indicators to collaborative capacity for planning: motivation, interpersonal, service, supportive and individualistic indicators, and four climate indicators: cooperation, job satisfaction, organizational commitment, and role clarity. Findings suggest (a) a constructive culture and positive climate were present within the FSRCs during the period of study and (b) participants perceived that the collaborative capacity for planning existed. Hierarchical multiple regression, controlling for effects of participant demographics, were used to examine the degree to which organizational culture and climate predict collaborative capacity. The culture indicators, supportive and individualistic, and the climate indicator job satisfaction accounted for 46% of the variance in collaborative capacity for planning. No other indicators of the independent variables demonstrated significance. The findings suggests that (a) culture and climate should be studied together, (b) culture and climate are two constructs that may provide knowledge about the way community groups work together, and (c) the collaborative capacity of groups planning services such as the FSRCs may benefit through consideration of how culture and climate affect service planners' relationships, communication, and ability to achieve a mission or goal. Culture and climate may offer social workers new information about internal factors affecting the collaborative process. Further investigation of these constructs with other types of groups is warranted. ^
Resumo:
International travel has significant implications on the study of architecture. This study analyzed ways in which undergraduate and graduate students benefited from the experience of international travel and study abroad. Taken from the perspective of 15 individuals who were currently or had been architecture students at the University of Miami and Florida International University or who were alumni of the University of Florida and Syracuse University, the research explored how international travel and study abroad enhanced their awareness and understanding of architecture, and how it complemented their architecture curricula. This study also addressed a more personal aspect of international travel in order to learn how the experience and exposure to foreign cultures had positively influenced the personal and professional development of the participants.^ Participants’ individual and two-person semi-structured interviews about study abroad experiences were electronically recorded and transcribed for analysis. A second interview was conducted with five of the participants to obtain feedback concerning the accuracy of the transcripts and the interpretation of the data. Sketch journals and design projects were also analyzed from five participants and used as data for the purposes of better understanding what these individuals learned and experienced as part of their study abroad.^ Findings indicated that study abroad experiences helped to broaden student understanding about architecture and urban development. These experiences also opened the possibilities of creative and professional expression. For many, this was the most important aspect of their education as architects because it heightened their interest in architecture. These individuals talked about how they had the opportunity to experience contemporary and ancient buildings that they had learned about in their history and design classes on their home campuses. In terms of personal and professional development, many of the participants remarked that they became more independent and self-reliant because of their study abroad experiences. They also displayed a sense of global awareness and were interested in the cultures of their host nations. The study abroad experiences also had a lasting influence on their professional development.^
Resumo:
The environment affects our health, livelihoods, and the social and political institutions within which we interact. Indeed, nearly a quarter of the global disease burden is attributed to environmental factors, and many of these factors are exacerbated by global climate change. Thus, the central research question of this dissertation is: How do people cope with and adapt to uncertainty, complexity, and change of environmental and health conditions? Specifically, I ask how institutional factors, risk aversion, and behaviors affect environmental health outcomes. I further assess the role of social capital in climate adaptation, and specifically compare individual and collective adaptation. I then analyze how policy develops accounting for both adaptation to the effects of climate and mitigation of climate-changing emissions. In order to empirically test the relationships between these variables at multiple levels, I combine multiple methods, including semi-structured interviews, surveys, and field experiments, along with health and water quality data. This dissertation uses the case of Ethiopia, Africa’s second-most populous nation, which has a large rural population and is considered very vulnerable to climate change. My fieldwork included interviews and institutional data collection at the national level, and a three-year study (2012-2014) of approximately 400 households in 20 villages in the Ethiopian Rift Valley. I evaluate the theoretical relationships between households, communities, and government in the process of adaptation to environmental stresses. Through my analyses, I demonstrate that water source choice varies by individual risk aversion and institutional context, which ultimately has implications for environmental health outcomes. I show that qualitative measures of trust predict cooperation in adaptation, consistent with social capital theory, but that measures of trust are negatively related with private adaptation by the individual. Finally, I describe how Ethiopia had some unique characteristics, significantly reinforced by international actors, that led to the development of an extensive climate policy, and yet with some challenges remaining for implementation. These results suggest a potential for adaptation through the interactions among individuals, communities, and government in the search for transformative processes when confronting environmental threats and climate change.
Resumo:
Background: The relationship between mental health and climate change are poorly understood. Participatory methods represent ethical, feasible, and culturally-appropriate approaches to engage community members for mental health promotion in the context of climate change. Aim: Photovoice, a community-based participatory research methodology uses images as a tool to deconstruct problems by posing meaningful questions in a community to find actionable solutions. This community-enhancing technique was used to elicit experiences of climate change among women in rural Nepal and the association of climate change with mental health. Subjects and methods: Mixed-methods, including in-depth interviews and self-report questionnaires, were used to evaluate the experience of 10 women participating in photovoice. Quantitative tools included Nepali versions of Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) and a resilience scale. Results: In qualitative interviews after photovoice, women reported climate change adaptation and behavior change strategies including environmental knowledge-sharing, group mobilization, and increased hygiene practices. Women also reported beneficial effects for mental health. The mean BDI score prior to photovoice was 23.20 (SD=9.00) and two weeks after completion of photovoice, the mean BDI score was 7.40 (SD=7.93), paired t-test = 8.02, p<.001, n=10. Conclusion: Photovoice, as a participatory method, has potential to inform resources, adaptive strategies and potential interventions to for climate change and mental health.
Resumo:
In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47' N, 108°07' E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate from about 15 kyr BP (1 kyr = 1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~ -38 °C) and July (~ 12 °C) temperatures and annual precipitation (~ 270-300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8-14.7 kyr BP, during the Allerød Interstadial between 13.3-12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw ~ 17-18 °C, Tc ~ -19 °C, Pann ~ 500-550 mm) that occurred ca. 10.8-7.3 kyr BP. During this time interval woody vegetation covered more than 50 % of the area within a 21x21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7-6.5 kyr BP. Our results demonstrate a gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel since that time.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.
Resumo:
Coastal zones with their natural and societal subsystems are exposed to rapid changes and pressures on resources. Scarcity of space and impacts of climate change are prominent drivers of land use and adaptation management today. Necessary modifications to present land use management strategies and schemes influence both the structures of coastal communities and the ecosystems involved. Approaches to identify the impacts and account for (i) the linkages between social references and needs and (ii) ecosystem services in coastal zones have been largely absent. The presented method focuses on improving the inclusion of ecosystem services in planning processes and clarifies the linkages with social impacts. In this study, fourteen stakeholders in decisionmaking on land use planning in the region of Krummhörn (northwestern Germany, southern North Sea coastal region) conducted a regional participative and informal process for local planning capable to adapt to climate driven changes. It is argued that scientific and practical implications of this integrated assessment focus on multifunctional options and contribute to more sustainable practices in future land use planning. The method operationalizes the ecosystem service approach and social impact analysis and demonstrates that social demands and provision of ecosystem services are inherently connected.
Resumo:
Triggered by recent flood catastrophes and increasing concerns about climate change, scientists as well as policy makers increasingly call for making long-term water policies to enable a transformation towards flood resilience. A key question is how to make these long-term policies adaptive so that they are able to deal with uncertainties and changing circumstances. The paper proposes three conditions for making long-term water policies adaptive, which are then used to evaluate a new Dutch water policy approach called ‘Adaptive Delta Management’. Analysing this national policy approach and its translation to the Rotterdam region reveals that Dutch policymakers are torn between adaptability and the urge to control. Reflecting on this dilemma, the paper suggests a stronger focus on monitoring and learning to strengthen the adaptability of long-term water policies. Moreover, increasing the adaptive capacity of society also requires a stronger engagement with local stakeholders including citizens and businesses.
Resumo:
Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.
Resumo:
This chapter explores the trade-off between competing objectives of employment creation and climate policy commitments in Irish agriculture. A social accounting matrix (SAM) multiplier model is linked with a partial equilibrium agricultural sector model to simulate the impact of a number of GHG emission reduction scenarios, assuming these are achieved through a constraint on beef production. Limiting the size of the beef sector helps to reduce GHG emissions with a very limited impact on the value of agricultural income at the farm level. However, the SAM multiplier analysis shows that there would be significant employment losses in the wider economy. From a policy perspective, a pragmatic approach to GHG emissions reductions in the agriculture sector, which balances opportunities for economic growth in the sector with opportunities to reduce associated GHG emissions, may be required.
Resumo:
Zoonotic parasitic diseases are increasingly impacting human populations due to the effects of globalization, urbanization and climate change. Here we review the recent literature on the most important helminth zoonoses, including reports of incidence and prevalence. We discuss those helminth diseases which are increasing in endemic areas and consider their geographical spread into new regions within the framework of globalization, urbanization and climate change to determine the effect these variables are having on disease incidence, transmission and the associated challenges presented for public health initiatives, including control and elimination.