758 resultados para Ant-based algorithm
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Resumo:
"Expectation-Maximization'' (EM) algorithm and gradient-based approaches for maximum likelihood learning of finite Gaussian mixtures. We show that the EM step in parameter space is obtained from the gradient via a projection matrix $P$, and we provide an explicit expression for the matrix. We then analyze the convergence of EM in terms of special properties of $P$ and provide new results analyzing the effect that $P$ has on the likelihood surface. Based on these mathematical results, we present a comparative discussion of the advantages and disadvantages of EM and other algorithms for the learning of Gaussian mixture models.
Resumo:
Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.
Resumo:
In this paper, we present a P2P-based database sharing system that provides information sharing capabilities through keyword-based search techniques. Our system requires neither a global schema nor schema mappings between different databases, and our keyword-based search algorithms are robust in the presence of frequent changes in the content and membership of peers. To facilitate data integration, we introduce keyword join operator to combine partial answers containing different keywords into complete answers. We also present an efficient algorithm that optimize the keyword join operations for partial answer integration. Our experimental study on both real and synthetic datasets demonstrates the effectiveness of our algorithms, and the efficiency of the proposed query processing strategies.
Resumo:
The discontinuities in the solutions of systems of conservation laws are widely considered as one of the difficulties in numerical simulation. A numerical method is proposed for solving these partial differential equations with discontinuities in the solution. The method is able to track these sharp discontinuities or interfaces while still fully maintain the conservation property. The motion of the front is obtained by solving a Riemann problem based on the state values at its both sides which are reconstructed by using weighted essentially non oscillatory (WENO) scheme. The propagation of the front is coupled with the evaluation of "dynamic" numerical fluxes. Some numerical tests in 1D and preliminary results in 2D are presented.
Resumo:
This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
In this paper, we address this problem through the design of a semiactive controller based on the mixed H2/H∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H2/H∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evaluated in a real-time hybrid testing facility that consists of a physical specimen (a small-scale magnetorheological damper) and a numerical model (a large-scale three-story building)
Resumo:
In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.