793 resultados para Alzheimer’s disease (AD)
Resumo:
This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a 'comparator', i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a 'mismatch' is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Pick's disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.
Resumo:
Elevated LDL concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidative modification (oxLDL) and nitration is observed during dementia and hypercholesterolemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVEC) were maintained on transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naïve, normo- and hyperlipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40mg simvastatin intervention/day for three months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after three months. LDL isolated from statin-naïve hyperlipidaemic, AD and AD-plus subjects was more oxidised (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared to control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 Vs 3.95±0.2nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml Vs 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7nmol/mg protein) compared to untreated cells (23.8±1.2 vs nmol/mg protein). Basolateral IL-6 secretion was increased by LDL-lipids from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared to healthy subject lipids (18.6±3.6 pg/ml). LDL-Lipids isolated after statin intervention did not affect endothelial function. In summary, LDL-lipids from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVEC. In vivo intervention with statins reduces the damaging effects of LDL-lipids on HMVEC.
Resumo:
Alzheimer's disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of β-amyloid (Aβ) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections. © 2012 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
The spatial patterns of β-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) were studied in areas of the cerebral cortex in 16 patients with the late-onset, sporadic form of Alzheimer's disease (AD). Diffuse, primitive, and classic Aβ deposits and NFT were aggregated into clusters; the clusters being regularly distributed parallel to the pia mater in many areas. In a significant proportion of regions, the sizes of the regularly distributed clusters approximated to those of the cells of origin of the cortico-cortical projections. The diffuse and primitive Aβ deposits exhibited a similar range of spatial patterns but the classic Aβ deposits occurred less frequently in large clusters >6400m. In addition, the NFT often occurred in larger regularly distributed clusters than the Aβ deposits. The location, size, and distribution of the clusters of Aβ deposits and NFT supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortico-cortical and cortico-hippocampal pathways results in synaptic disconnection and the formation of clusters of NFT and Aβ deposits. © 2011 Nova Science Publishers, Inc.
Resumo:
To determine the factors influencing the distribution of β-amyloid (Aβ) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic Aβ deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Aβ deposits were distributed either in clusters 200-6400 μm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 μm in diameter. In some regions, smaller clusters of Aβ deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Aβ deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Aβ deposits and blood vessels, the classic Aβ deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Aβ deposition in the temporal lobe in sporadic AD. A regular distribution of Aβ deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.
Resumo:
One of the pathological hallmarks of Alzheimer's disease (AD) brain is extracellular β-amyloid (Aβ) plaques containing 39-42 amino acid Aβ peptides. The deposition of Aβ around blood vessels, known as Cerebral amyloid angiopathy (CAA), is also a common feature in AD brain. Vascular density and cerebral blood flow are reduced in AD brains, and vascular risk factors such as hypertension and diabetes are also risk factors for AD. We have shown previously that Aβ peptides can potently inhibit angiogenesis both in-vitro and in-vivo, but the mechanism of action for this effect is not known. Therefore, my first hypothesis was that particular amino acid sequence(s) within the Aβ peptide are required for inhibition of angiogenesis. From this aim, I found a peptide sequence which was critical for anti-angiogenic activity (HHQKLVFF). This sequence contains a heparan sulfate proteoglycan growth factor binding domain implying that Aβ can interfere with growth factor signaling. Leading on from this, my second hypothesis was that Aβ can inhibit angiogenesis by binding to growth factor receptors. I found that Aβ can bind to Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), and showed that this is one mechanism by which Aβ can inhibit angiogenesis. Since the vasculature is disrupted in AD brains, I investigated whether a strategy to increase brain vascularization would be beneficial against AD pathology. Therefore, my third hypothesis was that voluntary exercise (which is known to increase brain vascularization in rodents) can ameliorate Aβ pathology, increase brain vascularization, and improve behavioral deficits in a transgenic mouse model of AD. I found that exercise has no effect on Aβ pathology, brain vascularization or behavioral deficits. Therefore, in the transgenic mouse model that I used, exercise is an ineffective therapeutic strategy against AD pathology and symptoms.
Resumo:
The amyloid cascade hypothesis places amyloid-β at the origin of Alzheimer's disease (AD). Amyloid-β (Aβ) is the product of the sequential cleavage of the amyloid precursor protein (APP) by the enzymes β- and γ-secretases. An inflammatory component to AD has been suggested in association with CD40 (a member of the tumor necrosis factor receptor superfamily (TNFRS) and its cognate ligand CD40L. In this study, I hypothesized that the neutralization of pro-inflammatory cytokines produced downstream of CD40/CD40L interaction would reduce APP processing. I also hypothesized that blocking the binding of different adaptor proteins to CD40 by mutating its cytoplasmic tail would result in significant reduction of the APP metabolites: Aβ, sAPPβ, sAPPα, CTFβ and CTFα. ^ Treatment with CD40L of human embryonic kidney cells over-expressing both APP and CD40 (HEK/APPsw/CD40) significantly increased levels of the cytokine granulocyte macrophage colony stimulating factor (GM-CSF). Neutralizing antibodies against GM-CSF mitigated the CD40L-induced production of Aβ in these cells. Treatment of the HEK/APPsw/CD40 cells with recombinant GM-CSF significantly increased Aβ levels. GM-CSF receptor gene silencing with shRNA significantly reduced Aβ levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Silencing of the GM-CSF receptor also decreased APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). ^ Using CD40 mutants, I show that CD40L can increase levels of Aβ(1-40), Aβ(1-42), sAPPβ, sAPPα and CTFβ independently of TRAF signaling. TRAFs had been shown to be necessary for most CD40/CD40L-dependent signaling. An increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells was observed, reflecting alterations in APP trafficking. CD4OL treatment of a neuroblastoma cell line over-expressing CTFβ suggested that CD40L affected γ-secretase activity. Inhibition of γ-secretase activity significantly reduced sAPPβ levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on γ-secretase and affects β-secretase via a positive feedback mechanism. ^ Taken together, the results of this dissertation suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Aβ production by influencing APP trafficking. Moreover, the data presented suggest that CD40/CD40L interaction can modulate APP processing via a mechanism independent of TRAF signaling. ^
Resumo:
Acknowledgments This work was supported by The Croatian Science Foundation grant. no. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of protective neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138.
Resumo:
The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.
Resumo:
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Resumo:
Although epidemiological studies suggest that type 2 diabetes mellitus (T2DM) increases the risk of late-onset Alzheimer's disease (LOAD), the biological basis of this relationship is not well understood. The aim of this study was to examine the genetic comorbidity between the 2 disorders and to investigate whether genetic liability to T2DM, estimated by a genotype risk scores based on T2DM associated loci, is associated with increased risk of LOAD. This study was performed in 2 stages. In stage 1, we combined genotypes for the top 15 T2DM-associated polymorphisms drawn from approximately 3000 individuals (1349 cases and 1351 control subjects) with extracted and/or imputed data from 6 genome-wide studies (>10,000 individuals; 4507 cases, 2183 controls, 4989 population controls) to form a genotype risk score and examined if this was associated with increased LOAD risk in a combined meta-analysis. In stage 2, we investigated the association of LOAD with an expanded T2DM score made of 45 well-established variants drawn from the 6 genome-wide studies. Results were combined in a meta-analysis. Both stage 1 and stage 2 T2DM risk scores were not associated with LOAD risk (odds ratio = 0.988; 95% confidence interval, 0.972-1.004; p = 0.144 and odds ratio = 0.993; 95% confidence interval, 0.983-1.003; p = 0.149 per allele, respectively). Contrary to expectation, genotype risk scores based on established T2DM candidates were not associated with increased risk of LOAD. The observed epidemiological associations between T2DM and LOAD could therefore be a consequence of secondary disease processes, pleiotropic mechanisms, and/or common environmental risk factors. Future work should focus on well-characterized longitudinal cohorts with extensive phenotypic and genetic data relevant to both LOAD and T2DM.
Resumo:
Nowadays it is still difficult to perform an early and accurate diagnosis of dementia, therefore many research focus on the finding of new dementia biomarkers that can aid in that purpose. So scientists try to find a noninvasive, rapid, and relatively inexpensive procedures for early diagnosis purpose. Several studies demonstrated that the utilization of spectroscopic techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy could be an useful and accurate procedure to diagnose dementia. As several biochemical mechanisms related to neurodegeneration and dementia can lead to changes in plasma components and others peripheral body fluids, blood-based samples and spectroscopic analyses can be used as a more simple and less invasive technique. This work is intended to confirm some of the hypotheses of previous studies in which FTIR was used in the study of plasma samples of possible patient with AD and respective controls and verify the reproducibility of this spectroscopic technique in the analysis of such samples. Through the spectroscopic analysis combined with multivariate analysis it is possible to discriminate controls and demented samples and identify key spectroscopic differences between these two groups of samples which allows the identification of metabolites altered in this disease. It can be concluded that there are three spectral regions, 3500-2700 cm -1, 1800-1400 cm-1 and 1200-900 cm-1 where it can be extracted relevant spectroscopic information. In the first region, the main conclusion that is possible to take is that there is an unbalance between the content of saturated and unsaturated lipids. In the 1800-1400 cm-1 region it is possible to see the presence of protein aggregates and the change in protein conformation for highly stable parallel β-sheet. The last region showed the presence of products of lipid peroxidation related to impairment of membranes, and nucleic acids oxidative damage. FTIR technique and the information gathered in this work can be used in the construction of classification models that may be used for the diagnosis of cognitive dysfunction.
Resumo:
A cross-sectional study was carried out to examine the pattern of changes in the capacity to coordinate attention between two simultaneously performed tasks in a group of 570 volunteers, from 5 to 17 years old. Method: The results revealed that the ability to coordinate attention increases with age, reaching adult values by age 15 years. Also, these results were compared with the performance in the same dual task of healthy elderly and Alzheimer disease (AD) patients found in a previous study. Results: The analysis indicated that AD patients showed a lower dual-tasking capacity than 5-year-old children, whereas the elderly presented a significantly higher ability than 5-year-old children and no significant differences with respect to young adults. Conclusion: These findings may suggest the presence of a working memory system’s mechanism that enables the division of attention, which is strengthened by the maturation of prefrontal cortex, and impaired in AD. (J. of Att. Dis. 2016; 20(2) 87-95)
Resumo:
Although several postmortem findings in the retina of patients with Alzheimer's disease (AD) are available, new biomarkers for early diagnosis and follow-up of AD are still lacking. It has been postulated that the defects in the retinal nerve fiber layer (RNFL) may be the earliest sign of AD, even before damage to the hippocampal region that affects memory. This fact may reflect retinal neuronal-ganglion cell death and axonal loss in the optic nerve in addition to aging.
Resumo:
O-GlcNAc glycosylation of nuclear and cytosolic proteins is an essential post-translational modification implicated in many diseases, from cancer to diabetes. Importantly, many important neuronal proteins are also O-GlcNAc modified, and aberrant O-GlcNAcylation of these proteins may contribute to the pathology of neurodegenerative diseases although these mechanisms have not been well defined. Here we investigated the role of O-GlcNAc glycosylation in the brain, utilizing both chemistry and molecular biology to study O-GlcNAc transferase (OGT), the enzyme that adds the sugar modification. To evaluate the role of OGT in adult neurons, we generated a forebrain-specific conditional knockout of OGT (OGT cKO) in mice. Although indistinguishable from wild-type littermates at birth, after three weeks we observe progressive neurodegeneration in OGT cKO mice. Hallmarks of Alzheimer’s disease, including neuronal loss, neuroinflammation, behavioral deficits, hyperphosphorylated tau, and amyloid beta peptide accumulation, are observed. Furthermore, decreases in OGT protein levels were found in human AD brain tissue, suggesting that altered O-GlcNAcylation likely contributes to neurodegenerative diseases in humans. This model is one of a few mouse models that recapitulate AD phenotypes without mutating and overexpressing human tau, amyloid precursor protein, or presenilin, highlighting the essential role of OGT in neurodegenerative pathways.
Given the importance of OGT in the brain, we further investigated the regulation of the OGT enzyme by phosphorylation. We found that phosphorylation of OGT near its C-terminus reduces its activity in cancer cells, and have developed phosphorylation-specific antibodies to aid mechanistic studies. Furthermore, mutation of this phosphorylation site on OGT, followed by overexpression in neurons was shown to enhance neurite outgrowth, demonstrating a functional consequence for this site. Thus phosphorylation of OGT inhibits its activity and enhances neurite outgrowth, and current studies aim to characterize the signaling pathway that regulates OGT phosphorylation in neurons.