923 resultados para Aeronautical components
Resumo:
Samples taken from middens at the Neolithic site of Catalhoyuk in Turkey have been analysed using IR spectroscopy backed up by powder XRD and SEM-EDX. Microcomponents studied include fossil hack-berries (providing evidence of ancient diet and seasonality), mineral nodules (providing evidence of post-depositional change) and phytoliths (mineralised plant cells, providing evidence of usage of plant species). Finely laminated ashy deposits have also been investigated allowing chemical and mineralogical variations to be explored. It is found that many layers which appear visually to be quite distinctive have, in fact, very similar mineralogy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
One of the major uncertainties in the ability to predict future climate change, and hence its impacts, is the lack of knowledge of the earth's climate sensitivity. Here, data are combined from the 1985-96 Earth Radiation Budget Experiment (ERBE) with surface temperature change information and estimates of radiative forcing to diagnose the climate sensitivity. Importantly, the estimate is completely independent of climate model results. A climate feedback parameter of 2.3 +/- 1.4 W m(-2) K-1 is found. This corresponds to a 1.0-4.1-K range for the equilibrium warming due to a doubling of carbon dioxide (assuming Gaussian errors in observable parameters, which is approximately equivalent to a uniform "prior" in feedback parameter). The uncertainty range is due to a combination of the short time period for the analysis as well as uncertainties in the surface temperature time series and radiative forcing time series, mostly the former. Radiative forcings may not all be fully accounted for; however, all argument is presented that the estimate of climate sensitivity is still likely to be representative of longer-term climate change. The methodology can be used to 1) retrieve shortwave and longwave components of climate feedback and 2) suggest clear-sky and cloud feedback terms. There is preliminary evidence of a neutral or even negative longwave feedback in the observations, suggesting that current climate models may not be representing some processes correctly if they give a net positive longwave feedback.
Resumo:
The formation of a lava dome involves fractionation of the lava into core and clastic components. We show that for three separate, successive andesitic lava domes that grew at Soufrière Hills volcano, Montserrat, between 1999 and 2007, the volumetric proportion of the lava converted to talus or pyroclastic flow deposits was 50%–90% of the lava extruded. Currently, only 8% of the total magma extruded during the 1995–2007 eruption remains as core lava. The equivalent representation in the geological record will probably be even lower. Most of the lava extruded at the surface flowed no further than 150–300 m from the vent before disaggregation, resulting in a lava core whose shape tends to a cylinder. Moderate to high extrusion rates at the Soufrière Hills domes may have contributed to the large clastic fraction observed. Creating talus dissipates much of the energy that would otherwise be stored in the core lava of domes. The extreme hazards from large pyroclastic flows and blasts posed by wholesale collapse of a lava dome depend largely on the size of the lava core, and hence on the aggregate history of the partitioning process, not on the size of the dome.
Resumo:
A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.