839 resultados para Aerobic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a Gram-negative aerobic bacterium that belongs to a group of opportunistic pathogens displaying diverse environmental and pathogenic lifestyles. B. cenocepacia is known for its ability to cause lung infections in people with cystic fibrosis and it possesses a large 8?Mb multireplicon genome encoding a wide array of pathogenicity and fitness genes. Transcriptomic profiling across nine growth conditions was performed to identify the global gene expression changes made when B. cenocepacia changes niches from an environmental lifestyle to infection. In comparison to exponential growth, the results demonstrated that B. cenocepacia changes expression of over one-quarter of its genome during conditions of growth arrest, stationary phase and surprisingly, under reduced oxygen concentrations (6% instead of 20.9% normal atmospheric conditions). Multiple virulence factors are upregulated during these growth arrest conditions. A unique discovery from the comparative expression analysis was the identification of a distinct, co-regulated 50-gene cluster that was significantly upregulated during growth under low oxygen conditions. This gene cluster was designated the low-oxygen-activated (lxa) locus and encodes six universal stress proteins and proteins predicted to be involved in metabolism, transport, electron transfer and regulation. Deletion of the lxa locus resulted in B. cenocepacia mutants with aerobic growth deficiencies in minimal medium and compromised viability after prolonged incubation in the absence of oxygen. In summary, transcriptomic profiling of B. cenocepacia revealed an unexpected ability of aerobic Burkholderia to persist in the absence of oxygen and identified the novel lxa locus as key determinant of this important ecophysiological trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nepsilon-(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was approximately 0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High catalytic activity and selectivity has been demonstrated for the oxidation of both aliphatic and aromatic amines to nitriles under benign conditions with dioxygen or air using the Ru2Cl4(az-tpy)(2) complex. The conversion was found to be strongly influenced by the alkyl chain length of the reactant with shorter chain amines found to have lower conversions than those with longer chains. Importantly, by using the ruthenium terpyridine complex functionalized with azulenyl moiety at the 4 position of central pyridine core provided a much higher reactivity catalyst compared with a series of ruthenium terpyridine-based ligand complexes reported. Mechanistic studies using deuterated benzylamine demonstrated the importance of RuOH in this reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface modification of a mechanochemically prepared Ag/Al O catalyst compared with catalysts prepared by standard wet impregnated methods has been probed using two-dimensional T -T NMR correlations, HO temperature programmed desorption (TPD) and DRIFTS. The catalysts were examined for the selective catalytic reduction of NO using n-octane in the presence and absence of H. Higher activities were observed for the ball milled catalysts irrespective of whether H was added. This higher activity is thought to be related to the increased affinity of the catalyst surface towards the hydrocarbon relative to water, following mechanochemical preparation, resulting in higher concentrations of the hydrocarbon and lower concentrations of water at the surface. DRIFTS experiments demonstrated that surface isocyanate was formed significantly quicker and had a higher surface concentration in the case of the ball milled catalyst which has been correlated with the stronger interaction of the n-octane with the surface. This increased interaction may also be the cause of the reduced activation barrier measured for this catalyst compared with the wet impregnated system. The decreased interaction of water with the surface on ball milling is thought to reduce the effect of site blocking whilst still providing a sufficiently high surface concentration of water to enable effective hydrolysis of the isocyanate to form ammonia and, thereafter, N. This journal is © The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This laboratory experiment systematically examines arsenic, iron, and phosphorus solubilities in soil suspensions as affected by addition of phosphorus fertilizer under different redox potential (Eh) and pH conditions. Under aerobic conditions, As solubility was low, however, under moderately reducing conditions (0, -150 mV), As solubility significantly increased due to dissolution of iron oxy-hydroxides. Upon reduction to -250 mV, As solubility was controlled by the formation of insoluble sulfides, and as a result soluble As contents significantly decreased. Soluble Fe concentration increased from moderate to highly anaerobic conditions; however, it decreased under aerobic conditions likely due to formation of insoluble oxy-hydroxides. A low pH, 5.5, led to increased soluble concentrations of As, Fe, and P. Finally, addition of P-fertilizers resulted in higher soluble P and As, even though the concentration of As did not increased after an addition rate of 600 mg P kg(-1) soil. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The postpartum period is a vulnerable time for excess weight retention, particularly for the increasing number of women who are overweight at the start of their pregnancy and subsequently find it difficult to lose additional weight gained during pregnancy. Although postpartum weight management interventions play an important role in breaking this potentially vicious cycle of weight gain, the effectiveness of such interventions in breastfeeding women remains unclear. Our aim was to systematically review the literature about the effectiveness of weight management interventions in breastfeeding women.

Methods: Seven electronic databases were searched for eligible papers. Intervention studies included were carried out exclusively in breastfeeding mothers, ≤2 years postpartum and with a body mass index greater than 18.5 kg/m2, with an outcome measure of change in weight and/or body composition.

Results: Six studies met the selection criteria, and were stratified according to the type of intervention and outcome measures. Despite considerable heterogeneity among studies, the dietary-based intervention studies appeared to be the most efficacious in promoting weight loss; however, few studies were tailored toward the needs of breastfeeding women.

Conclusions: Weight management interventions which include an energy-restricted diet may play a key role in successful postpartum weight loss for breastfeeding mothers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant tumors metabolize glucose to lactate even in the presence of oxygen (aerobic glycolysis). The metabolic switch from oxidative glycolysis to non-oxidative fermentation of glucose and proteins performed by the tumor cells seems to be associated with TKTL1 and pAkt overexpression. Therefore the aim of the present study was to investigate the expression of TKTL1 and pAkt in human specimens of endometrial cancer as compared to benign endometrium. Additionally, expression of the glucose transporter GLUT1 was also investigated as aerobic glycolysis is associated with an increased need for glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidneys are highly aerobic organs that are critically dependent on the normal functioning of mitochondria. Genetic variations disrupting mitochondrial function are associated with multifactorial disorders including kidney disease. This study sequenced the entire mitochondrial genome in a renal transplant cohort of 64 individuals, using next-generation sequencing, to evaluate the association of genetic variants with IgA nephropathy and end-stage renal disease (ESRD, n = 100).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The limits to biological processes on Earth are determined by physicochemical parameters, such as extremes of temperature and low water availability. Research into microbial extremophiles has enhanced our understanding of the biophysical boundaries which define the biosphere. However, there remains a paucity of information on the degree to which rates of microbial multiplication within extreme environments are determined by the availability of specific chemical elements. Here, we show that iron availability and composition of the gaseous phase (aerobic vs. microaerobic) determine susceptibility of a marine bacterium, Halomonas hydrothermalis, to sub-optimal and elevated temperature and salinity by impacting rates of cell division (but not viability). In particular, iron starvation combined with microaerobic conditions (5 % v/v of O2, 10 % v/v of CO2, reduced pH) reduced sensitivity to temperature across the 13 °C range tested. These data demonstrate that nutrient limitation interacts with physicochemical parameters to determine biological permissiveness for extreme environments. The interplay between resource availability and stress tolerance, therefore, may shape the distribution and ecology of microorganisms within Earth's biosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Aims: The identification of complex chronic polymicrobial infections, such as those observed in the cystic fibrosis (CF) airways, are often a diagnostic challenge. Few studies have compared culture-dependent methods with molecular identification making it hard to describe bacterial communities in a comprehensive manner. The aim of the study is to compare four different methods with respect to their similarities and differences in detection of bacteria. Methods: We compared41 sputum samples fromroutine clinical-culture, extended-culture (aerobic and anaerobic), and molecular identification such as Roche 454-FLX Titanium and T-RFLP to assess concurrence between methodologies in detecting bacteria. The agreement between methodologies in detecting either absence or presence of bacterial taxa was assessed by Kappa (κ) statistics. Results: The majority of bacterial taxa identified by culture were also identified with molecular analysis. In total 2, 60, 25, and 179 different bacterial taxa were identified with clinical-culture, extended-culture, T-RFLP and 454-FLX respectively. Clinical-culture, extended-culture and T-RFLP were poor predictors of species richness when compared to 454-FLX (p < 0.0001). Agreement between methods for detecting Pseudomonas sp. and Burkholderia sp. was good with κ ≥ 0.7 [p < 0.0001] and κ ≥ 0.9 [p < 0.0001] respectively. Detection of anaerobic bacteria, such as Prevotella sp. and Veillonella sp., was moderate between extended-culture and 454-FLX with κ = 0.461 [p < 0.0001] and κ = 0.311 [p = 0.032] respectively, and good between T-RFLP and 454-FLX with κ = 0.577 [p < 0.0001] and κ = 0.808 [p < 0.0001] respectively. Agreement between methods for other main bacterial taxa, such as Staphylcoccus sp. and Streptococcus sp., was poor with only a moderate agreement for detection of Streptococcus sp. observed between T-RFLP and 454-FLX (κ = 0.221 [p = 0.024]). Conclusions: This study demonstrates the increased sensitivity culture-independent microbial identification such as the 454-FLX have over clinical-culture, extended-culture and T-RFLP methodologies. The extended-culture detected majority of the most prevalent bacterial taxa associated with chronic colonisation of the CF airways which were also detected by culture-independent methodologies. However, agreement between methods in detecting number of potentially relevant bacteria is largely lacking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Aims: Previous studies have shown that the lungs of Cystic Fibrosis (CF) and bronchiectasis (BE, not caused by CF) patients are colonised by a range of aerobic and anaerobic bacteria. As bacteria are also implicated in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD), this study aimed to determine the culture microbiome of the COPD airways.

Methods: Samples were collected from 13 stable COPD patients during routine bronchoscopy. Bronchial washings were taken at a single location in the right middle lobe by flushing and removing 30 ml of sterile saline. Samples were cultured under strict anaerobic conditions with bacteria detected by plating on both selective and non-selective agar media and quantified by total viable count (TVC). Identification of the cultured bacteria was performed by amplification and subsequent sequencing of the 16sRNA gene.

Results: Mean FEV1 was 1.36 (range 0.84–2.26, mean per cent predicted FEV1, 54%), and the mean ratio (FEV1/FVC) was 51%. Bacteria were detected in 12/13 samples (92%) with bacteria from the genera Streptococcus [12/13 samples, 92%; mean (range) TVC 9.62×105 cfu/ml (1.50×103–1.42×107)] and Haemophilus [4/13 samples, 31%; mean (range) 6.40×104 cfu/ml (2.20×103–1.60×105)] most frequently detected. Anaerobic bacteria primarily from the genera Prevotella [8/13 samples, 62%; mean (range) TVC 1.12×104 cfu/ml (1.30×103–4.20×104)] and Veillonella [5/13 samples, 38%; mean (range) TVC 1.29×105 cfu/ml (4.20×103–3.60×105)] were also detected. Pseudomonas and Moraxella were not detected in any samples.

Conclusions: Our results show that bacteria from the genera Streptococcus, Haemophilus, Prevotella and Veillonella are frequently present the airways of patients suffering from COPD. Taking account of the dilutional effect of the bronchial wash procedure and extrapolating to allow comparison with sputum data in our laboratory for CF and BE, the relative load of bacteria from the genera Streptococcus, Prevotella and Veillonella is similar in these three airway diseases. The potential role of these bacteria in the progression and pathogenesis of COPD requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visible-light-activated yellow amorphous TiO2 (yam- TiO 2) was synthesised by a simple and organic-free precipitation method. TiN, an alternative precursor for TiO2 preparation, was dissolved in hydrogen peroxide under acidic condition (pH∼1) adjusted by nitric acid. The yellow precipitate was obtained after adjusting pH of the resultant red brown solution to 2 with NH4OH. The BET surface area of this sample was 261 m2/g. The visible light photoactivity was evaluated on the basis of the photobleaching of methylene blue (MB) in an aqueous solution by using a 250 W metal halide bulb equipped with UV cutoff filter (λ>420 nm) under aerobic conditions. Yam- TiO2 exhibits an interesting property of being both surface adsorbent and photoactive under visible light. It was assigned to the η2-peroxide, an active intermediate form of the addition of H2O2 into crystallined TiO2 photocatalyst. It can be concluded that an active intermediate form of titanium peroxo species in photocatalytic process can be synthesised and used as a visible-light-driven photocatalyst

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study reports the effect a cell permeabilizer, polyethylenimine (PEI) has on the photodynamic effect of methylene blue (MB) and nuclear fast red (NFR) in the presence of hydrogen peroxide (H2O2). The photosensitized destruction of the algae Chlorella vulgaris under irradiation with visible light is examined. The photodynamic effect was investigated under aerobic and anaerobic conditions. The presence of a permeabilizer during the photosensitized destruction of C. vulgaris does not enhance the activity of the MB, MB/H2O2 system or the NFR, NFR/H2O 2 system under aerobic conditions. However under anaerobic conditions we have determined that when a cell permeabilizer was added to the MB/H 2O2 system, the photosensitized destruction of C. vulgaris proceeded via a combination of Type I and Type II mechanisms. The presence of PEI enforces MB/H2O2 to be active toward the destruction of C. vulgaris whether oxygen is present or absent. Under aerobic and anaerobic conditions the activity of NFR was suppressed in the presence of PEI as a result of electrostatic interactions between the photosensitizer and the cell permeabilizer. The decrease in fluorescence recorded is indicative of destruction of the chlorophyll a pigment.