929 resultados para Adaptive swing doors trending
Resumo:
Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Fusion ARTMAP generalizes the fuzzy ARTMAP architecture in order to adaptively classify multi-channel data. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, beco1ne inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called parallel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of thmn. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network.
Resumo:
This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.
Resumo:
The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.
Resumo:
This article introduces ART 2-A, an efficient algorithm that emulates the self-organizing pattern recognition and hypothesis testing properties of the ART 2 neural network architecture, but at a speed two to three orders of magnitude faster. Analysis and simulations show how the ART 2-A systems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate learning rates. Intermediate learning rates permit fast commitment of category nodes but slow recoding, analogous to properties of word frequency effects, encoding specificity effects, and episodic memory. Better noise tolerance is hereby achieved without a loss of learning stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm. The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural computation.
Resumo:
A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.
Resumo:
This paper introduces a new class of predictive ART architectures, called Adaptive Resonance Associative Map (ARAM) which performs rapid, yet stable heteroassociative learning in real time environment. ARAM can be visualized as two ART modules sharing a single recognition code layer. The unit for recruiting a recognition code is a pattern pair. Code stabilization is ensured by restricting coding to states where resonances are reached in both modules. Simulation results have shown that ARAM is capable of self-stabilizing association of arbitrary pattern pairs of arbitrary complexity appearing in arbitrary sequence by fast learning in real time environment. Due to the symmetrical network structure, associative recall can be performed in both directions.
Resumo:
The advent of modern wireless technologies has seen a shift in focus towards the design and development of educational systems for deployment through mobile devices. The use of mobile phones, tablets and Personal Digital Assistants (PDAs) is steadily growing across the educational sector as a whole. Mobile learning (mLearning) systems developed for deployment on such devices hold great significance for the future of education. However, mLearning systems must be built around the particular learner’s needs based on both their motivation to learn and subsequent learning outcomes. This thesis investigates how biometric technologies, in particular accelerometer and eye-tracking technologies, could effectively be employed within the development of mobile learning systems to facilitate the needs of individual learners. The creation of personalised learning environments must enable the achievement of improved learning outcomes for users, particularly at an individual level. Therefore consideration is given to individual learning-style differences within the electronic learning (eLearning) space. The overall area of eLearning is considered and areas such as biometric technology and educational psychology are explored for the development of personalised educational systems. This thesis explains the basis of the author’s hypotheses and presents the results of several studies carried out throughout the PhD research period. These results show that both accelerometer and eye-tracking technologies can be employed as an Human Computer Interaction (HCI) method in the detection of student learning-styles to facilitate the provision of automatically adapted eLearning spaces. Finally the author provides recommendations for developers in the creation of adaptive mobile learning systems through the employment of biometric technology as a user interaction tool within mLearning applications. Further research paths are identified and a roadmap for future of research in this area is defined.
Resumo:
Video compression techniques enable adaptive media streaming over heterogeneous links to end-devices. Scalable Video Coding (SVC) and Multiple Description Coding (MDC) represent well-known techniques for video compression with distinct characteristics in terms of bandwidth efficiency and resiliency to packet loss. In this paper, we present Scalable Description Coding (SDC), a technique to compromise the tradeoff between bandwidth efficiency and error resiliency without sacrificing user-perceived quality. Additionally, we propose a scheme that combines network coding and SDC to further improve the error resiliency. SDC yields upwards of 25% bandwidth savings over MDC. Additionally, our scheme features higher quality for longer durations even at high packet loss rates.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.
Resumo:
Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.
Resumo:
info:eu-repo/semantics/published
Resumo:
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Resumo:
African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90) to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.
Resumo:
Males of many insect species feed their partner during courtship and mating. Studies of male nutrient donation in various systems have established that nuptial feeding has evolved mostly through sexual selection. Although there is extensive diversity in form, the function of nuptial gifts is typically limited to either facilitating copulation or increasing ejaculate transfer, depending on the time at which the gift is consumed by females. Unlike other insects, the Hawaiian swordtail cricket Laupala (Gryllidae: Trigonidiinae) exhibits serial transfer of nuptial gifts. Males transfer multiple spermless 'micro' spermatophores over several hours before mating at the end of the day (i.e. before the transfer of a single sperm-containing 'macro' spermatophore). By experimental manipulation of male microspermatophore donation, I tested several hypotheses pertaining to the adaptive significance of nuptial gifts in this system. I found that microspermatophore transfer improves insemination, by causing the female reproductive tract to take in more sperm. This result reveals a previously undocumented function for premating nuptial gift donation among insects. Enhanced sperm transfer due to microspermatophore donation may represent male manipulation or an internal mechanism of post-copulatory choice by females. I also performed experimental manipulation of male photoperiod to investigate how time and gender influence nuptial gift production and mating behavior. I found that the timing of mating is limited in males but not females and that the time of pair formation has consequences for the degree of nuptial gift donation, which suggests that both mating timing and microspermatophore number is important for male reproductive success. Finally, I observed the mating behavior of several trigonidiine taxa for a comparative analysis of sexual behavior and found that other genera also utilize spermless microspermatophores, which suggests that microspermatophore donation may be a common nuptial gift strategy among swordtail crickets. The elaborate nuptial feeding behavior of Hawaiian swordtail crickets prior to mating represents a newly discovered strategy to increase male insemination success rather than mating success. Based on this unexpected result, it is worth exploring whether courtship behaviors in other cricket or insect mating systems have also evolved to increase sperm uptake.
Resumo:
PURPOSE: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (PNON) and adaptive plan (PADP), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between PNON and PADP for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (dT-OAR), initial internal target volume (ITV1), ITV change (ΔITV), and effective ITV diameter change (ΔdITV). RESULTS: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from -59.6% to 13.0%, with a mean (±SD) of -21.0% (±21.4%). On average of all patients, PADP resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. ΔdITV/dT-OAR was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between ΔdITV/dT-OAR and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. CONCLUSIONS: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.