849 resultados para ALZHEIMERS-DISEASE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Des études récentes ont rapporté que les individus âgés avec un trouble cognitif léger (TCL) ont de plus grandes activations en lien avec la réalisation d’une tâche cognitive que des personnes âgées saines. Des auteurs ont proposé que ces hyperactivations pourraient refléter des processus de plasticité cérébrale compensatoires ayant lieu pendant la phase précoce de la maladie d’Alzheimer. Des processus de compensations fonctionnelles pourraient émerger en réponse à une perte d’intégrité structurelle dans les régions du cerveau normalement requises pour compléter une tâche. Dans ce mémoire, j’ai évalué cette hypothèse chez des personnes avec TCL en faisant appel à une tâche de mémoire de travail comportant plusieurs niveaux de difficulté ainsi qu’aux techniques d’imagerie par résonnance magnétique (IRM) structurelle et fonctionnelle. Des analyses de régression multiples ont été utilisées afin d’identifier les régions cérébrales dont l’activité variait en fonction de l’intégrité neuronale telle que définie par le volume de l’hippocampe. Les valeurs estimées des paramètres du signal de ces régions furent ensuite extraites afin de procéder à des analyses corrélationnelles sur la performance ainsi que sur le volume de différentes structures cérébrales. Les résultats indiquent des hyperactivations dans les régions frontales droites chez les participants TCL souffrant d’une plus grande atteinte neuronale. De plus, le niveau d’activation est négativement corrélé au volume de structures frontales et pariétales. Ces résultats indique la présence d’une hyperactivation compensatoire dans la phase du TCL associée à la réalisation d’une tâche de mémoire de travail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microglia are the resident immune cells of the central nervous system (CNS) and play an important role in innate immune defense as well as tissue homeostasis. Chronic microglial reactivity, microgliosis, is a general hallmark of inflammatory and degenerative diseases that affect the CNS, including the retina. There is increasing evidence that chronic microgliosis is more than just a bystander effect, but rather actively contributes to progression of degeneration through processes such as toxic nitric oxide (NO) production and even phagocytosis of stressed but viable photoreceptors. Therefore immunmodulation of microglia presents a possible therapeutic strategy for retinal degenerations. Notably, the expression of the mitochondrial translocator protein 18 (κDa) (TSPO) is highly elevated in reactive microglia as seen in several neuroinflammatory diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Therefore it is used as a gliosis biomarker in the brain. Moreover TSPO ligands show potent effects in resolving neuroinflammatory brain disorders. However, TSPO expression in the eye had not been investigated before. Further, it was unknown whether TSPO ligands’ potent immunomodulatory effects could be used to treat retinal degenerations. To fill this gap, the study aimed to analyze whether TSPO is also a potential biomarker for degenerative processes in the retina. Moreover the thesis attempted to determine whether a specific TSPO ligand, XBD173, might modulate microglial reactivity and is a potent therapeutic, to treat retinal degenerative diseases. The findings revealed that TSPO is strongly upregulated in microglial cells of retinoschisin-deficient (RS1-/y) mice, a model of inherited retinal degeneration and in a murine light damage model. A co-localization of TSPO and microglia was furthermore detectable in human retinal sections, indicating a potential role for TSPO as a biomarker for retinal degenerations. In vitro assays showed that the TSPO ligand XBD173 effectively inhibited features of microglial activation such as morphological transformation into reactive phagocytes and enhanced expression of pro-inflammatory cytokines. XBD173 also reduced microglial migration and proliferation and reduced their neurotoxic potential on photoreceptor cells. In two independent mouse models of light-induced retinal degeneration, the treatment with XBD173 reduced accumulation of amoeboid, reactive microglia in the outer retina and attenuated degenerative processes, indicated by a nearly preserved photoreceptor layer. A further question addressed in this thesis was whether minocycline, an antibiotic with additional anti-inflammatory properties is able to reduce microglial neurotoxicity and to protect the retina from degeneration. Minocycline administration dampened microglial pro-inflammatory gene expression, NO production and neurotoxicity on photoreceptors. Interestingly, in addition to its immunomodulatory effect, minocycline also increased the viability of photoreceptors in a direct manner. In the light damage model, minocycline administration counter-acted microglial activation and blocked retinal degeneration. Taken together these results identified TSPO as a biomarker for microglial reactivity and as therapeutic target in the retina. Targeting TSPO with XBD173 was able to reverse microglial reactivity and could prevent degenerative processes in the retina. In addition, the study showed that the antibiotic minocycline effectively counter-regulates microgliosis and light-induced retinal degeneration. Considering that microgliosis is a major contributing factor for retinal degenerative disorders, this thesis supports the concept of a microglia-directed therapy to treat retinal degeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente trabajo tuvo como objetivo evaluar la existencia de la relación entre la atrofia cortical difusa objetivada por neuroimagenes cerebrales y desempeños cognitivos determinados mediante la aplicación de pruebas neuropsicológicas que evalúan memoria de trabajo, razonamiento simbólico verbal y memoria anterógrada declarativa. Participaron 114 sujetos reclutados en el Hospital Universitario Mayor Méderi de la ciudad de Bogotá mediante muestreo de conveniencia. Los resultados arrojaron diferencias significativas entre los dos grupos (pacientes con diagnóstico de atrofia cortical difusa y pacientes con neuroimagenes interpretadas como dentro de los límites normales) en todas las pruebas neuropsicológicas aplicadas. Respecto a las variables demográficas se pudo observar que el grado de escolaridad contribuye como factor neuroprotector de un posible deterioro cognitivo. Tales hallazgos son importantes para determinar protocoles tempranos de detección de posible instalación de enfermedades neurodegenerativas primarias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La enfermedad de Alzheimer (EA) es la demencia más frecuente y su prevalencia continúa en aumento tanto en Colombia como en el mundo. Esta investigación tuvo como objetivo explorar si las actitudes hacia la EA varían según la edad y género de 450 personas adultas colombianas. Se realizó un estudio exploratorio de corte transversal en el que se aplicó un cuestionario autodiligenciado. Se encontró que efectivamente hay algunas diferencias según la edad y el género en el componente cognoscitivo (creencias y conocimiento) y conductual (intención conductual y conducta) de las actitudes; y diferencias según el género en el componente afectivo. Se concluye que los conocimientos sobre la EA son escasos, que la tristeza es la emoción predominante hacia la EA y que es un tema de interés en el que predomina la idea de que afecta especialmente la memoria. Se discutieron los resultados reconociendo que esta es una aproximación inicial a las actitudes hacia la EA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Alzheimer’s disease, the most common form of dementia, the loss of cholinergic neurons leads to the progressive reduction of acetylcholine in the brain, resulting cognitive impairment. Inhibition of the hydrolysis of acetylcholine by blocking acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) has been considered as a potential target in the treatment of Alzheimer’s disease. Essential oils and extracts of aromatic plants may have an important role in the oxidative stress protection. Traditionally, in Alentejo (Portugal), aromatic herbs Calamintha nepeta, Foeniculum vulgare, Mentha spicata and Thymus mastichina are often used by local population as condiments in food preparations. In this study, essential oils (EOs) and aqueous extracts (decoction waters) of these flavouring herbs were selected in order to evaluate its antioxidant potential and ability to inhibit AChE and BChE activities. Results suggest the potential use of EOs and extracts as nutraceutical or pharmaceutical preparations in the prevention of the oxidative stress and degenerative diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the chemical composition of olive oil (Olea europaea L.) it is emphasized the massive presence of oleic acid (over 70%), monounsaturated fatty acid part of the family of omega 9, a 7-8% linoleic acid (omega 6) and a small presence (0.5-1%) of linolenic acid (omega 3). For its high content of monounsaturated fatty acids, olive oil is the most stable and therefore the most suitable for heating, compared to oils with a dominance of polyunsaturated fatty acids. Interest in vitamin E has increased in recent years, thanks to its high antioxidant power and its role against related diseases with age-related, visual, dermatological, cardiovascular disorders Alzheimer’s disease and more. Vegetable oils are a major source of vitamin E through diet (Sayago et al., 2007), especially with the variety of olives “Hojiblanca”. Thanks to unsaturated fatty acids cell oxidation can be prevented: this helps prevent many illness, and even premature aging. So far, the advantages acknowledged to olive oil are those of lowering cholesterol, preventing cardiovascular disease, diabetes and cancer. Among the most recent researches it is important to distinguish the studies carried out on their contribution to the prevention and treatment of breast cancer and Alzheimer’s disease. Researchers found that in addition to the benefi ts that give monounsaturated fats, in extra virgin olive oil, there is a substance called “oleocanthal”, which helps protect nerve cells damaged in Alzheimer’s disease. The importance of this discovery is enormous when one considers that only Alzheimer’s disease affects 30 million people around the world, with a different distribution depending on the type of oil in the diet (Olguín Cordero, 2012). The latest research endorses that oleocanthal works by destroying cancer cells without affecting the healthy ones, as it is stated in the Molecular and Cellular Oncology Journal. Studies carried out in different Spanish universities have concluded that thanks to the antioxidant power of olive oil, a disease such as Alzheimer can be prevented. In conclusion, we can say that the Mediterranean diet rich in extra virgin olive oil greatly infl uences on human health, reducing, delaying or even eliminating several diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To compare proteins related to Alzheimer disease ( AD) in the frontal cortex and cerebellum of subjects with early-onset AD (EOAD) with or without presenilin 1 (PS1) mutations with sporadic late-onset AD ( LOAD) and nondemented control subjects. Methods: Immunohistochemistry, immunoblot analysis, and ELISA were used to detect and assess protein levels in brain. Results: In EOAD and to a lesser extent in LOAD, there was increased amyloid beta (Abeta) deposition (by immunohistochemistry), increased soluble Abeta (by immunoblot analysis), and specific increases in Abeta(40) and Abeta(42) ( by ELISA) in the frontal cortex and, in some cases, in the cerebellum. Surprisingly, immunoblot analysis revealed reduced levels of PS1 in many of the subjects with EOAD with or without PS1 mutations. In those PS1 mutation-bearing subjects with the highest Abeta, PS1 was barely, if at all, detectable. This decrease in PS1 was specific and not attributable solely to neuronal loss because amyloid precursor protein (APP) and the PS1-interacting protein beta-catenin levels were unchanged. Conclusions: This study shows that in the frontal cortex and cerebellum from Alzheimer disease patients harboring certain presenilin 1 mutations, high levels of amyloid beta are associated with low levels of presenilin 1. The study provides the premise for further investigation of mechanisms underlying the downregulation of presenilin 1, which may have considerable pathogenic and therapeutic relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology impacts upon the metabolome is still not understood, nor is it known how disturbances change as the disease progresses. For the first time we have profiled longitudinally (6, 8, 10, 12 and 18 months) both the brain and plasma metabolome of APP/PS1 double transgenic and wild type (WT) mice. A total of 187 metabolites were quantified using a targeted metabolomics methodology. Multivariate statistical analysis produced models that distinguished APP/PS1 from WT mice at 8, 10 and 12 months.Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids,branched chain amino acids and also in the neurotransmitter serotonin.Pronounced imbalances in phospholipid and acylcarnitine homeostasis was evident in two age groups. AD-like pathology therefore impacts greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of long duration exercise program on physical fitness components of functional capacity in individuals with Parkinson disease (PD) and to evaluate ongoing effects of exercise after 8 to 10-week follow-up without exercise. Twenty-four individuals with PD were randomly assigned to two groups: generalized exercise program and stretching exercise program (control group). The generalized exercise program provided training in physical fitness components of functional capacity. The stretching exercise program was characterized by low intensity and volume, mainly with static exercises. Both groups were evaluated before (BI) and after the 4-month (AI) exercise program. In addition, the individuals of generalized exercise program were also evaluated after 8-month exercise program and after 8 to 10- week follow-up without exercise. The generalized exercise program improved flexibility (BI - 38.50±12.42 cm; AI - 44.00±12.74 cm) and agility (BI - 30.59±7.54 s; AI - 28.56±8.20 s) while the stretching exercise program worsened coordination (BI - 23.27±6.58 s; AI - 28.06±7.37 s) and aerobic resistance (BI- 13.64±3.76 min; AI - 17.27±5.15 min) and improved balance (BI - 44.00±7.79 pts; AI - 46.57±6.53 pts). Lower-limb strength and UPDRS-motor scale scores were better at 8 months (14.75±2.92 rep and 26.25±13.97 pts, respectively) compared to baseline (13.13±2.59 rep and 31.63±12.82 pts, respectively) and 4 months (13.50±1.93 rep and 30.38±14.52 pts, respectively) for generalized exercise program. However, the benefits of 8 months of exercise were lost after 8 to 10-week follow-up without exercise (lower-limb strength - 12.43±3.15 rep and UPDRS-motor scale - 32.57±14.05 pts). In conclusion, generalized exercise program improved the functional capacity in individuals with PD, differently of stretching exercise program. In addition, a long duration exercise program promoted benefits for functional capacity and disease progression in individuals with PD. However, benefits were lost after a short period without exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lithium salts have a well-established role in the treatment of major affective disorders. More recently, experimental and clinical studies have provided evidence that lithium may also exert neuroprotective effects. In animal and cell culture models, lithium has been shown to increase neuronal viability through a combination of mechanisms that includes the inhibition of apoptosis, regulation of autophagy, increased mitochondrial function, and synthesis of neurotrophic factors. In humans, lithium treatment has been associated with humoral and structural evidence of neuroprotection, such as increased expression of anti-apoptotic genes, inhibition of cellular oxidative stress, synthesis of brain-derived neurotrophic factor (BDNF), cortical thickening, increased grey matter density, and hippocampal enlargement. Recent studies addressing the inhibition of glycogen synthase kinase-3 beta (GSK3B) by lithium have further suggested the modification of biological cascades that pertain to the pathophysiology of Alzheimer's disease (AD). A recent placebo-controlled clinical trial in patients with amnestic mild cognitive impairment (MCI) showed that long-term lithium treatment may actually slow the progression of cognitive and functional deficits, and also attenuate Tau hyperphosphorylation in the MCI-AD continuum. Therefore, lithium treatment may yield disease-modifying effects in AD, both by the specific modification of its pathophysiology via inhibition of overactive GSK3B, and by the unspecific provision of neurotrophic and neuroprotective support. Although the clinical evidence available so far is promising, further experimentation and replication of the evidence in large scale clinical trials is still required to assess the benefit of lithium in the treatment or prevention of cognitive decline in the elderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Language alterations in Huntington's disease (HD) are reported, but their nature and correlation with other cognitive impairments are still under investigation. This study aimed to characterize the language disturbances in HD and to correlate them to motor and cognitive aspects of the disease. We studied 23 HD patients and 23 controls, matched for age and schooling, using the Boston Diagnostic Aphasia Examination, Boston Naming Test, the Token Test, Animal fluency, Action fluency, FAS-COWA, the Symbol Digit Modalities Test, the Stroop Test and the Hooper Visual Organization Test (HVOT). HD patients performed poorer in verbal fluency (p<0.0001), oral comprehension (p<0.0001), repetition (p<0.0001), oral agility (p<0.0001), reading comprehension (p=0.034) and narrative writing (p<0.0001). There was a moderate correlation between the Expressive Component and Language Competency Indexes and the HVOT (r=0.519, p=0.011 and r=0.450, p=0.031, respectively). Language alterations in HD seem to reflect a derangement in both frontostriatal and frontotemporal regions.