997 resultados para 650-degrees-c


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple, cost-effective and environment-friendly pathway for preparing highly porous matrix of giant dielectric material CaCu3Ti4O12 (CCTO) through combustion of a completely aqueous precursor solution is presented. The pathway yields phase-pure and impurity-less CCTO ceramic at an ultra-low temperature (700 degrees C) and is better than traditional solid-state reaction schemes which fail to produce pure phase at as high temperature as 1000 degrees C (Li, Schwartz, Phys. Rev. B 75, 012104). The porous ceramic matrix on grinding produced CCTO powder having particle size in submicron order with an average size 300 nm. On sintering at 1050 degrees C for 5 h the powder shows high dielectric constants (>10(4) at all frequencies from 100 Hz to 100 kHz) and low loss (with 0.05 as the lowest value) which is suitable for device applications. The reaction pathway is expected to be extended to prepare other multifunctional complex perovskite materials. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article describes a facile, low-cost, solution-phase approach to the large-scale preparation of Hg1-xCdxTe nanostructures of different shapes such as nanorods, quantum dots, hexagonal cubes of different sizes and different compositions at a growth temperature of 180 degrees C using an air stable Te source by solvothermal technique. The XRD spectrum shows that the crystals are cubic in their basic structure and reveals the variation in lattice constant as a function of composition. The size and morphology of the products were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of irregular shaped particles and few nano-rods in the present synthesis is attributed to the cetyl trimethylammonium bromide (CTAB). The room temperature FTIR absorption and PL studies for a compositon of x = 0.8 gives a band gap of 1.1 eV and a broad emission in NIR region (0.5-0.9 eV) with all bands attributed to surface defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel (main chain)-(side chain) vinyl polyperoxide, poly(alpha-(tert-butylperoxymethyl)styrene peroxide) (MCSCPP), an alternating copolymer of alpha-(tert-butylperoxymethyl)styrene (TPMS) and oxygen, has been synthesized by the oxidative polymerization of TPMS. The MCSCPP was characterized by H-1 NMR, C-13 NMR, IR, DSC, EI-MS, and GC-MS studies. The overall activation energy (E(a)) for the degradation of MCSCPP was found to be 27 kcal/mol. Formaldehyde and alpha-(tert-butylperoxy)acetophenone (TPAP) were identified as the primary degradation products of MCSCPP; TPAP was found to undergo further degradation. The side chain peroxy groups were found to be thermally more stable than those in the main chain. Polymerization of styrene in the presence of MCSCPP as initiator, at 80 degrees C, follows classical kinetics. The presence of peroxy segments in the polystyrene chain was confirmed by both H-1 NMR and thermal decomposition studies. Interestingly, unlike other vinyl polyperoxides, the MCSCPP initiator shows an increase in molecular weight with conversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reduction of alpha,beta-epoxyketones with diisopropoxytitanium(III) tetrahydroborate in dichloromethane under mild conditions (-78 degrees--> -20 degrees C) provides anti- (or erythro-) alpha,beta-epoxy alcohols in high yields with high degree of chemo- and stereoselectivity. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on ignition and combustion of distillery effluent containing solids consisting of 38 +/- 2% inorganics and 62 +/- 2% of organics (cane sugar derivatives) have been carried out in order to investigate the role of droplet size and ambient temperature in the process of combustion. Experiments were conducted on in liquid droplets of effluent having solids concentration 65% and (2) spheres of died (100% solids) effluent of diameters ranging from 0.5 to 25 mm. These spheres were introduced into a furnace where air temperature ranged from 500 to 1000 degrees C, and they burned with two distinct regimes of combustion-flaming and glowing. The ignition delay of the 65% concentration effluent increases with diameter as in the case of nonvolatile droplets, while that of dried spheres appears to be independent of size. The ignition delay shows Arrhenius dependence on temperature. The flaming combustion involves a weight loss of 50-80%, depending on ambient temperature, and the flaming time is given by t(f) similar to d(0)(2), as in the case of liquid fuel droplets and wood spheres. Char glowing involves weight loss of an additional 10-20%, with glowing time behaving as t(c) similar to d(0)(2) as in the case of wood char, even though the inert content of effluent char is as large as 50% compared to 2-3% in wood char Char combustion has been modeled, and the results of this model compare well with the experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous carbon films are prepared by the pyrolysis of Tetra Chloro Phthalic Anhydride (TCPA) at different temperatures (700 degrees C to 900 degrees C). DC Conductivity measurements are done on the films in the temperature range 300K to 4.2K. It shows an activated temperature dependence with a small activation energy (0.02eV to 0.003eV). Variable range hopping is observed at low temperatures. The films are characterised by XRD, SEM, TEM, AFM and microRaman. The electronic structure of the film is used to explain the electrical behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Ru - SiO2 catalyst, the kinetics of methanation of carbon dioxide has been studied. In the temperature range of 320-460-degrees-C a simple power law model is found to predict experimental results with a good agreement over the range of variables studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304L, 304 and 304 as-cast, during hot working has been studied. Compression and torsion tests were conducted in the temperature range 1100 to 1250 degrees C and strain rate range 0.001 to 100 s(-1) on these materials, Ferrite formation occurs during deformation at temperatures above 1150 degrees C and strain rates above 10 s(-1), in stainless steel type AISI 304L and 304. The tendency for the formation of ferrite is more in as-cast 304 than in wrought 304, In as-cast 304 the ferrite forms at lower temperatures and strain rates, The tendency for the ferrite formation is more in torsion than in compression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) is a homotetramer of M(r) 213,000 requiring pyridoxal-5'-phosphate (PLP) as cofactor, Removal of PLP from the holoenzyme converted the enzyme to the apo form which, in addition to being inactive, was devoid of the characteristic absorption spectrum. Upon the addition of PLP to the apoenzyme, complete activity was restored and the visible absorption spectrum with a maximum at 425 nm was regained. The interaction of PLP with the apoenzyme revealed two phases of reaction with pseudo-first-order rate constants of 20 +/- 5 s(-1) and 12.2 +/- 2.0 x 10(-3) s(-1), respectively. However, addition of PLP to the apoenzyme did not cause gross conformational changes as evidenced by circular dichroic and fluorescence spectroscopy. Although conformationally apoenzyme and holoenzyme were indistinguishable, they had distinct apparent melting temperatures of 51 +/- 2 and 58 +/- 2 degrees C, respectively, and the reconstituted holoenzyme was thermally as stable as the native holoenzyme. These results suggested that there was no apparent difference in the secondary structure of holoenzyme, apoenzyme, and reconstituted holoenzyme, However, sedimentation analysis of the apoenzyme revealed the presence of two peaks of S-20,S-w values of 8.7 +/- 0.5 and 5.7 +/- 0.3 S, respectively. A similar pattern was observed when the apoenzyme was chromatographed on a calibrated Sephadex G-150 column. The first peak corresponded to the tetrameric form (M(r) 200,000 +/- 15,000) while the second peak had a M(r) of 130,000 +/- 10,000. Reconstitution experiments revealed that only the tetrameric form of the apoenzyme could be converted into an active holoenzyme while the dimeric form could not be reconstituted into an active enzyme. These results demonstrate that PLP plays an important role in maintaining the structural integrity of the enzyme by preventing the dissociation of the enzyme into subunits, in addition to its function in catalysis. (C) 1996 Academic Press, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low temperature aqueous solution preparation under strong alkaline medium is reported for the synthesis of bismuth cuprates. Highly crystalline products were obtained at temperatures around 90 degrees C. Tetragonal Bi2CuO4 appears to be the only stable phase formed in the Bi-Cu-O system under these conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.