993 resultados para 207-1257C
Resumo:
Ocean Drilling Program (ODP) Leg 207, on the Demerara Rise in the western tropical North Atlantic, recovered multiple Cretaceous-Paleogene boundary sections containing an ejecta layer. Sedimentological, geochemical, and paleontological changes across the boundary closely match patterns expected for a mass extinction caused by a single impact. A normally graded, ~2-cm-thick bed of spherules that is interpreted as a primary air-fall deposit of impact ejecta occurs between sediments of the highest Cretaceous Plummerita hantkeninoides foraminiferal zone and the lowest Paleogene P0 foraminiferal zone. There are no other spherule layers in the section. In addition to extinction of Cretaceous taxa, foraminiferal abundance drops from abundant to rare across the boundary. Ir concentrations reach a maximum of ~1.5 ppb at the top of the spherule bed, and the Ir anomaly is associated with enrichment in other siderophile elements. We attribute the unusually well-preserved and relatively simple stratigraphy to the fact that Demerara Rise was close enough (~4500 km) to the Chicxulub impact site to receive ~2 cm of ejecta, yet was far enough away (and perhaps sheltered by the curve of northern South America) to have been relatively unaffected by impact-induced waves.
Resumo:
We report results from the analysis of intact polar lipids (IPLs) in sediments from Ocean Drilling Program Sites 1257 and 1258. IPLs, constituting the cell membranes of living organisms, were detected in organic-lean sediments but not in underlying organic-rich black shales. Microbial activity in organic-lean sediments is likely due to sulfate-dependent oxidation of methane whereas difficulties detecting IPLs in black shales are interpreted to result from unfavorable signal-to-noise ratios due to low cell concentrations in combination with extremely high analytical noise created by uncharacterized organic matrix. IPLs found are consistent with a low-diversity community of archaea and bacteria. The concentrations of IPLs are more than one order of magnitude lower than those in Neogene deep subsurface sediments at the Peruvian margin, suggestive of significantly lower cell concentrations in Demerara Rise. This finding is consistent with inferred low rates of subsurface microbial activity.
Resumo:
An up to 2-cm thick Chicxulub ejecta deposit marking the Cretaceous-Paleogene (K-Pg) boundary (the "K-T" boundary) was recovered in six holes drilled during ODP Leg 207 (Demerara Rise, tropical western Atlantic). Stunning features of this deposit are its uniformity over an area of 30 km2 and the total absence of bioturbation, allowing documentation of the original sedimentary sequence. High-resolution mineralogical, petrological, elemental, isotopic (Sr-Nd), and rock magnetic data reveal a distinct microstratigraphy and a range of ejecta components. The deposit is normally graded and composed predominantly of rounded, 0.1- to max. 1-mm sized spherules. Spherules are altered to dioctahedral aluminous smectite, though occasionally relict Si-Al-rich hydrated glass is also present, suggesting acidic precursor lithologies. Spherule textures vary from hollow to vesicle-rich to massive; some show in situ collapse, others include distinct Fe-Mg-Ca-Ti-rich melt globules and lath-shaped Al-rich quench crystals. Both altered glass spherules and the clay matrix (Site 1259B) display strongly negative epsilon-Nd (T=65Ma) values (-17) indicating uptake of Nd from contemporaneous ocean water during alteration. Finally, Fe-Mg-rich spherules, shocked quartz and feldspar grains, few lithic clasts, as well as abundant accretionary and porous carbonate clasts are concentrated in the uppermost 0.5-0.7 mm of the deposit. The carbonate clasts display in part very unusual textures, which are interpreted to be of shock-metamorphic origin. The preservation of delicate spherule textures, normal grading with lack of evidence for traction transport, and sub-millimeter scale compositional trends provide evidence for this spherule deposit representing a primary air-fall deposit not affected by significant reworking. The ODP Leg 207 spherule deposit is the first known dual-layer K-Pg boundary in marine settings; it incorporates compositional and stratigraphic aspects of both proximal and distal marine sites. Its stratigraphy strongly resembles the dual-layer K-Pg boundary deposits in the terrestrial Western Interior of North America (although there carbonate phases are not preserved). The occurrence of a dual ejecta layer in these quite different sedimentary environments - separated by several thousands of kilometers - provides additional evidence for an original sedimentary sequence. Therefore, the layered nature of the deposit may document compositional differences between ballistic Chicxulub ejecta forming the majority of the spherule deposit, and material falling out from the vapor (ejecta) plume, which is concentrated in the uppermost part.
Resumo:
Oceanic anoxic events (OAEs) were episodes of widespread marine anoxia during which large amounts of organic carbon were buried on the ocean floor under oxygen-deficient bottom waters (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). OAE2, occurring at the Cenomanian/Turonian boundary (about 93.5 Myr ago) (Gradstein et al., 2004), is the most widespread and best defined OAE of the mid-Cretaceous. Although the enhanced burial of organic matter can be explained either through increased primary productivity or enhanced preservation scenarios (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). the actual trigger mechanism, corresponding closely to the onset of these episodes of increased carbon sequestration, has not been clearly identified. It has been postulated that large-scale magmatic activity initially triggered OAE2 (Sinton and Duncan, 1997; Kerr, 1998, doi:10.1144/gsjgs.155.4.0619), but a direct proxy of magmatism preserved in the sedimentary record coinciding closely with the onset of OAE2 has not yet been found. Here we report seawater osmium isotope ratios in organic-rich sediments from two distant sites. We find that at both study sites the marine osmium isotope record changes abruptly just at or before the onset of OAE2. Using a simple two-component mixing equation, we calculate that over 97 per cent of the total osmium content in contemporaneous seawater at both sites is magmatic in origin, a ~30-50-fold increase relative to pre-OAE conditions. Furthermore, the magmatic osmium isotope signal appears slightly before the OAE2 -as indicated by carbon isotope ratios- suggesting a time-lag of up to ~23 kyr between magmatism and the onset of significant organic carbon burial, which may reflect the reaction time of the global ocean system. Our marine osmium isotope data are indicative of a widespread magmatic pulse at the onset of OAE2, which may have triggered the subsequent deposition of large amounts of organic matter.
Resumo:
A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ?90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS**- production.
Resumo:
Rezension von: Elisabeth Baum / Till-Sebastian Idel / Heiner Ullrich (Hrsg.): Kollegialität und Kooperation in der Schule. Theoretische Konzepte und empirische Befunde. Wiesbaden. Springer VS 2012 (207 S.; ISBN 978-3-531-18104-2)
Resumo:
Organic carbon-rich shales deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 were drilled during ODP Leg 207 at Demerara Rise. We present integrated high-resolution geochemical records of core intervals from ODP Sites 1259 and 1261 both from nannofossil biozone CC14. Our results reveal systematic variations in marine and detrital sediment contribution, depositional processes, and bottom water redox conditions during black shale formation at two locations on Demerara Rise in different paleo-water depths. A combination of redox proxies (Fe/S, P/Al, C/P, redox-sensitive/sulfide-forming trace metals Mn, Cd, Mo, Ni, V, Zn) and other analytical approaches (bulk sediment composition, P speciation, electron microscopy, X-ray diffraction) evidence anoxic to sulfidic bottom water and sediment conditions throughout the deposition of black shale. These extreme redox conditions persisted and were periodically punctuated by short-termed periods with less reducing bottom waters irrespective of paleo-water depth. Sediment supply at both sites was generally dominated by marine material (carbonate, organic matter, opal) although relationships of detrital proxies as well as glauconitic horizons support some influence of turbidites, winnowing bottom currents and/or variable detritus sources, along with less reducing bottom water at the proposed shallower location (ODP Site 1259). At Site 1261, located at greater paleo-depth, redox fluctuations were more regular, and steady hemipelagic sedimentation sustained the development of mostly undisturbed lamination in the sedimentary record. Strong similarities of the studied deposits exist with the stratigraphic older Cenomanian-Turonian OAE2 black shale sections at Demerara Rise, suggesting that the primary mechanisms controlling continental supply and ocean redox state were time-invariant and kept the western equatorial Atlantic margin widely anoxic over millions of years.
Resumo:
Servicios registrales