990 resultados para 187-1164
Resumo:
The rapidly depleting petroleum feed stocks and increasing green house gas emissions around the world has necessitated a search for alternative renewable energy sources. Hydrogen with molecular weight of 2.016 g/mol and high chemical energy per mass equal to 142 MJ/kg has clearly emerged as an alternative to hydrocarbon fuels. Means for safe and cost effective storage are needed for widespread usage of hydrogen as a fuel.Chemical storage is the one of the safer ways to store hydrogen compared to compressed and liquefied hydrogen. It involves storing hydrogen in chemical bonds in molecules and materials where an on-board reaction is used to release hydrogen. Ammonia–borane, (AB,H3N·BH3) with a potential capacity of 19.6 wt% is considered a very promising solid state hydrogen storage material. It is thermally stable at ambient temperatures. There are two major routes for the generation of H2 from AB: catalytic hydrolysis/alcoholysis and catalytic thermal decomposition. There has been a flurry of research activity on the generation of H2 from AB recently. The present review deals with an overview of our efforts in developing cost-effective nanocatalysts for hydrogen generation from ammonia borane in protic solvents.
Resumo:
Scattering of water waves by a sphere in a two-layer fluid, where the upper layer has an ice-cover modelled as an elastic plate of very small thickness, while the lower one has a rigid horizontal bottom surface, is investigated within the framework of linearized water wave theory. The effects of surface tension at the surface of separation is neglected. There exist two modes of time-harmonic waves - the one with lower wave number propagating along the ice-cover and the one with higher wave number along the interface. Method of multipole expansions is used to find the particular solution for the problem of wave scattering by a submerged sphere placed in either of the layers. The exciting forces for vertical and horizontal directions are derived and plotted against different values of the wave number for different submersion depths of the sphere and flexural rigidity of the ice-cover. When the flexural rigidity and the density of the ice-cover are taken to be zero, the numerical results for the exciting forces for the problem with free surface are recovered as particular cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.
Resumo:
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first-order and second-order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth-order RungeKutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two-dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side-by-side. Results of these simulations were extensively compared with the previous numerical data. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Functionally Gradient Materials (FGM) are considered as a novel concept to implement graded functionality that otherwise cannot be achieved by conventional homogeneous materials. For biomedical applications, an ideal combination of bioactivity on the material surface as well as good physical property (strength/toughness/hardness) of the bulk is required in a designed FGM structure. In this perspective, the present work aims at providing a smooth gradation of functionality (enhanced toughening of the bulk, and retained biocompatibility of the surface) in a spark plasma processed hydroxyapatite-alumina-zirconia (HAp-Al2O3-YSZ) FGM bio-composite. In the current work HAp (fracture toughness similar to 1.5 MPa.m(1/2)) and YSZ (fracture toughness similar to 62 MPa.m(1/2)) are coupled with a transition layer of Al2O3 allowing minimum gradient of mechanical properties (especially the fracture toughness similar to 3.5 MPa.m(1/2)).The in vitro cyto-compatibilty of HAp-Al2O3-YSZ FGM was evaluated using L929 fibroblast cells and Saos-2 Osteoblast cells for their adhesion and growth. From analysis of the cell viability data, it is evident that FGM supports good cell proliferation after 2, 3, 4 days culture. The measured variation in hardness, fracture toughness and cellular adhesion across the cross section confirmed the smooth transition achieved for the FGM (HAp-Al2O3-YSZ) nanocomposite, i.e. enhanced bulk toughness combined with unrestricted surface bioactivity. Therefore, such designed biomaterials can serve as potential bone implants. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report Si-isotopic compositions of 75 sedimentologically and petrographically characterized chert samples with ages ranging from similar to 2600 to 750 Ma using multi-collector inductively coupled plasma mass spectrometry. delta Si-30 values of the cherts analyzed in this study show a similar to 7 parts per thousand range, from -4.29 to +2.85. This variability can be explained in part by (1) simple mixing of silica derived from continental (higher delta Si-30) and hydrothermal (lower delta Si-30) sources, (2) multiple mechanisms of silica precipitation and (3) Rayleigh-type fractionations within pore waters of individual basins. We observe similar to 3 parts per thousand variation in peritidal cherts from a single Neoproterozoic sedimentary basin (Spitsbergen). This variation can be explained by Rayleigh-type fractionation during precipitation from silica-saturated porewaters. In some samples, post-dissolution and reprecipitation of silica could have added to this effect. Our data also indicate that peritidal cherts are enriched in the heavier isotopes of Si whereas basinal cherts associated with banded iron formations (BIF) show lower delta Si-30. This difference could partly be due to Si being derived from hydrothermal sources in BIFs. We postulate that the difference in delta Si-30 between non-BIF and BIF cherts is consistent with the contrasting genesis of these deposits. Low delta Si-30 in BIF is consistent with laboratory experiments showing that silica adsorbed onto Fe-hydroxide particles preferentially incorporates lighter Si isotopes. Despite large intrabasinal variation and environmental differences, the data show a clear pattern of secular variation. Low delta Si-30 in Archean cherts is consistent with a dominantly hydrothermal source of silica to the oceans at that time. The monotonically increasing delta Si-30 from 3.8 to 1.5 Ga appears to reflect a general increase in continental versus hydrothermal sources of Si in seawater, as well as the preferential removal of lighter Si isotopes during silica precipitation in iron-associated cherts from silica-saturated seawater. The highest delta Si-30 values are observed in 1.5 Ga peritidal cherts; in part, these enriched values could reflect increasing sequestration of light silica during soil-forming processes, thus, delivering relatively heavy dissolved silica to the oceans from continental sources. The causes behind the reversal in trend towards lower delta Si-30 in cherts younger than 1.5 Ga old are less clear. Cherts deposited 1800-1900 Ma are especially low delta Si-30, a possible indication of transiently strong hydrothermal input at this time. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Social insects are characterized by reproductive caste differentiation of colony members into one or a small number of fertile queens and a large number of sterile workers. The evolutionary origin and maintenance of such sterile workers remains an enduring puzzle in insect sociobiology. Here, we studied ovarian development in over 600 freshly eclosed, isolated, virgin female Ropalidia marginata wasps, maintained in the laboratory. The wasps differed greatly both in the time taken to develop their ovaries and in the magnitude of ovarian development despite having similar access to resources. All females started with no ovarian development at day zero, and the percentage of individuals with at least one oocyte at any stage of development increased gradually across age, reached 100% at 100. days and decreased slightly thereafter. Approximately 40% of the females failed to develop ovaries within the average ecological lifespan of the species. Age, body size and adult feeding rate, when considered together, were the most important factors governing ovarian development. We suggest that such flexibility and variation in the potential and timing of reproductive development may physiologically predispose females to accept worker roles and thus provide a gateway to worker ontogeny and the evolution of sociality.
Resumo:
Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear problems, the solution obtained in the iterative process can diverge due to numerical instability. As a result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive environment. Reliable solution methods which do not need Jacobian calculation at each iteration are needed for this problem. In this paper, a comparative study is done by incorporating different methods for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the Jacobian at the initial guess are investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
With the introduction of the earth observing satellites, remote sensing has become an important tool in analyzing the Earth's surface characteristics, and hence in supplying valuable information necessary for the hydrologic analysis. Due to their capability to capture the spatial variations in the hydro-meteorological variables and frequent temporal resolution sufficient to represent the dynamics of the hydrologic processes, remote sensing techniques have significantly changed the water resources assessment and management methodologies. Remote sensing techniques have been widely used to delineate the surface water bodies, estimate meteorological variables like temperature and precipitation, estimate hydrological state variables like soil moisture and land surface characteristics, and to estimate fluxes such as evapotranspiration. Today, near-real time monitoring of flood, drought events, and irrigation management are possible with the help of high resolution satellite data. This paper gives a brief overview of the potential applications of remote sensing in water resources.
Resumo:
We report on the rectification properties from a single ZnS nanorod measured using the UHV-SPM technique. The rectification behavior is evidenced from the current-voltage characteristics measured on a single ZnS nanorod. We propose a tunneling mechanism where the direct tunneling mechanism is dominant at lower applied bias voltages followed by resonant tunneling through discrete energy levels of the nanorod. A further increase in the bias voltage changes the tunneling mechanism to the Fowler-Nordheim tunneling regime enabling rectification behavior. Realizing rectification from a single ZnS nanorod may provide a means of realizing a single nanorod based miniaturized device.
Resumo:
This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.
Resumo:
The world is in the midst of a biodiversity crisis, threatening essential goods and services on which humanity depends. While there is an urgent need globally for biodiversity research, growing obstacles are severely limiting biodiversity research throughout the developing world, particularly in Southeast Asia. Facilities, funding, and expertise are often limited throughout this region, reducing the capacity for local biodiversity research. Although western scientists generally have more expertise and capacity, international research has sometimes been exploitative ``parachute science,'' creating a culture of suspicion and mistrust. These issues, combined with misplaced fears of biopiracy, have resulted in severe roadblocks to biodiversity research in the very countries that need it the most. Here, we present an overview of challenges to biodiversity research and case studies that provide productive models for advancing biodiversity research in developing countries. Key to success is integration of research and education, a model that fosters sustained collaboration by focusing on the process of conducting biodiversity research as well as research results. This model simultaneously expands biodiversity research capacity while building trust across national borders. It is critical that developing countries enact policies that protect their biodiversity capital without shutting down international and local biodiversity research that is essential to achieve the long-term sustainability of biodiversity, promoting food security and economic development.
Resumo:
This paper presents a specific kind of failure in ethylene cracking coils coated with anticoking film. It investigates a case in which the coils made of 35Cr 45Ni high temperature alloy failed within two years of operation. The damage occurred due to heavy oxidation in localized regions of the coil resulting in the formation of blisters, which eventually failed by cracking. The mechanism involved was determined by studying the oxidized samples under a scanning electron microscope with an energy dispersive system and is attributed to the presence of rare earth metals in the anti-coking film and inherent casting defects in the base alloy. The cerium present in the anti-coking film diffused preferentially to a defect site in the parent alloy thereby resulting in its segregation which further led to embrittlement. (C) 2014 Elsevier Ltd. All rights reserved.