931 resultados para water and wastewater services
Resumo:
We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity “site-dipole field” is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 Å in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 Å, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.
Resumo:
Penetration of 3H-labeled water (3H2O) and the 14C-labeled organic acids benzoic acid ([14C]BA), salicylic acid ([14C]SA), and 2,4-dichlorophenoxyacetic acid ([14C]2,4-D) were measured simultaneously in isolated cuticular membranes of Prunus laurocerasus L., Ginkgo biloba L., and Juglans regia L. For each of the three pairs of compounds (3H2O/[14C]BA, 3H2O/[14C]SA, and 3H2O/[14C]2,4-D) rates of cuticular water penetration were highly correlated with the rates of penetration of the organic acids. Therefore, water and organic acids penetrated the cuticles by the same routes. With the combination 3H2O/[14C]BA, co-permeability was measured with isolated cuticles of nine other plant species. Permeances of 3H2O of all 12 investigated species were highly correlated with the permeances of [14C]BA (r2 = 0.95). Thus, cuticular transpiration can be predicted from BA permeance. The application of this experimental method, together with the established prediction equation, offers the opportunity to answer several important questions about cuticular transport physiology in future investigations.
Resumo:
This dissertation uses a political ecology approach to examine the relationship between tourism development and groundwater in southwest Nicaragua. Tourism in Nicaragua is a booming industry bolstered by ‘unspoiled’ natural beauty, low crime rates, and government incentives. This growth has led to increased infrastructure, revenue, and employment opportunities for many local communities along the Pacific coast. Not surprisingly, it has also brought concomitant issues of deeper poverty, widening gaps between rich and poor, and competition over natural resources. Adequate provisions of freshwater are necessary to sustain the production and reproduction of tourism; however, it remains uncertain if groundwater supplies can keep pace with demand. The objective of this research is to assess water supply availability amidst tourism development in the Playa Gigante area. It addresses the questions: 1) are local groundwater supplies sufficient to sustain the demand for freshwater imposed by increased tourism development? and 2) is there a power relationship between tourism development and control over local freshwater that would prove inequitable to local populations? Integrating the findings of groundwater monitoring, geological mapping, and ethnographic and survey research from a representative stretch of Pacific coastline, this dissertation shows that diminishing recharge and increased groundwater consumption is creating conflict between stakeholders with various levels of knowledge, power, and access. Although national laws are structured to protect the environment and ensure equitable access to groundwater, the current scramble to secure water has powerful implications on social relations and power structures associated with tourism development. This dissertation concludes that marginalization due to environmental degradation is attributable to the nexus of a political promotion of tourism, poorly enforced state water policies, insufficient water research, and climate change. Greater technical attention to hydrological dynamics and collaboration amongst stakeholders are necessary for equitable access to groundwater, environmental sustainability, and profitability of tourism.
Resumo:
This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.
Resumo:
Background: Self-rated health is a subjective measure that has been related to indicators such as mortality, morbidity, functional capacity, and the use of health services. In Spain, there are few longitudinal studies associating self-rated health with hospital services use. The purpose of this study is to analyze the association between self-rated health and socioeconomic, demographic, and health variables, and the use of hospital services among the general population in the Region of Valencia, Spain. Methods: Longitudinal study of 5,275 adults who were included in the 2005 Region of Valencia Health Survey and linked to the Minimum Hospital Data Set between 2006 and 2009. Logistic regression models were used to calculate the odds ratios between use of hospital services and self-rated health, sex, age, educational level, employment status, income, country of birth, chronic conditions, disability and previous use of hospital services. Results: By the end of a 4-year follow-up period, 1,184 participants (22.4 %) had used hospital services. Use of hospital services was associated with poor self-rated health among both men and women. In men, it was also associated with unemployment, low income, and the presence of a chronic disease. In women, it was associated with low educational level, the presence of a disability, previous hospital services use, and the presence of chronic disease. Interactions were detected between self-rated health and chronic disease in men and between self-rated health and educational level in women. Conclusions: Self-rated health acts as a predictor of hospital services use. Various health and socioeconomic variables provide additional predictive capacity. Interactions were detected between self-rated health and other variables that may reflect different complex predictive models, by gender.
Resumo:
In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.