845 resultados para solid catalysts
Resumo:
The technique of solid phase microextraction (SPME) was used for the extraction of halogenated contaminants of water samples from three cities of the State of São Paulo and the extracts were submitted to gas chromatographic analysis with electron capture detection (GC-ECD). In the samples of water collected at the city of São Paulo the detected level of trihalomethanes (THM) expressed as the sum of chloroform, dibromochloromethane and dichlorobromomethane, were higher than the permissible limit established by the Brazilian regulation. In the samples collected at the two other cities the level of any of the three THM remained below the sensitivity of the ECD.
Resumo:
The synthesis, characterization and some applications in catalysis of pillared clays are described at an introductory level. The use of x-ray diffraction, surface area measurements, thermal analysis, IR spectrophotometry and solid-state NMR in the characterization of pillared clays is briefly discussed. Pillarization followed by doping or introduction of metal clusters into clays could lead to the development of selective heterogeneous catalysts.
Resumo:
Complexation between acyclovir (ACV), an antiviral drug used for the treatment of herpes simplex virus infection, and beta-cyclodextrin (beta-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (¹H-NMR). In the solid state, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and dissolution studies were used. Solubility studies suggested the existence of a 1:1 complex between ACV and beta-CD. ¹H-NMR spectroscopy studies showed that the complex formed occurs with a stoichiometry ratio of 1:1. Powder X-ray diffraction indicated that ACV exists in a semicrystalline state in the complexed form with beta-CD. DSC studies showed the existence of a complex of ACV with beta-CD. The TGA studies confirmed the DSC results of the complex. Solubility of ACV in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.
Resumo:
Several bioaffinity assays are based on the detection of an analyte which is bound on a solid substrate via biochemical interaction. These so called solid phase assays are based on the adhesion of the primary binding partner on a solid surface, which then binds the analyte to be detected. In this thesis work a novel solid phase based assay technology, known as spot technology, was developed. The spot technology is based on combination of high-capacity solid phases, concentrated in a spot format, utilising modified streptavidin molecules and recombinant antibody fragments. The reduction of the solid phase binding surface to a size of a spot enabled denser binding of the target molecules, providing improved signal intensities and signal-to-background ratio when applied in different solid phase immunoassays. Streptavidin-biotin interactions are commonly utilised in numerous different bioaffinity assays and the ultimate nature of streptavidin to bind biotin is among the strongest non-covalent interaction reported between two biomolecules. In this study native core streptavidin was chemically modified to provide polymerised streptavidin molecules with altered adsorption properties. These streptavidin conjugates, when coated onto polystyrene surface, provided enhanced biotin binding capacity and surface stability when compared to a reference coating constructed with native streptavidin. Furthermore, the combination of chemically modified streptavidin, sitespecifically biotinylated antibody fragments and the spot coating technology provided highly dense solid phase coating with improved binding properties. The performance of the spot assay technology was further demonstrated in different immunoassay configurations. Human thyroid stimulating hormone (TSH) and human cardiac troponin I (cTnI) were used as model analytes to show the applicability of the highly sensitive spot-based solid-phase immunoassay for detection of very low levels of analytes. It was demonstrated that the spot technology provided an assay concept with enhanced sensitivity and short turn-around times, characteristics that are highly suitable for point-of-care applications.
Resumo:
Agricultural wastes from cactus Cereus peruvianus and Opuntia ficus indica were investigated for protein production by solid substrate fermentation. Firstly, the polyelectrolytes were extracted and used in water cleaning as auxiliary of flocculation and coagulation. The remaining fibrous material and peels were used as substrate for fermentation with Aspergillus niger. Glucoamylase and cellulase were the main enzymes produced. Amino acids were determined by HPLC and protein by Lowry's method. After 120 hours of fermentation the protein increased by 12.8%. Aspartic acid (1.27%), threonine (0.97%), glutamic acid (0.88%), valine (0.70%), serine (0.68%), arginine (0.82%), and phenylalanine (0.51%) were the principal amino acids produced.
Resumo:
The aim of this work is to review the chemical and physical properties of layered molybdenum disulfide. The three polymorphic/polytypic modifications of the compound were found, the polytypes 2H (molybdenite) and 3R are semiconductors while the polymorph 1T is an electronic conductor. 2H-MoS2 has several important industrial applications as hydrotreatment catalysts, energy storage devices, solar cells, solid lubricants, among others. When intercalated, the 2H phase changes to a distorted 1T phase, producing unstable intercalation compounds that can be exfoliated in solution, producing single layers and consequently nanocomposites. The direct synthesis of the 1T phase produces stable intercalation compounds. Recently molybdenum disulfide was prepared as nanotubes and fulerene-like structures that bring new insights in the investigation of this important material.
Resumo:
A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R)-N-(para-toluenesulfonyl)-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II) catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.
Resumo:
The aim of this paper is to analyze the effects of intermunicipal cooperation and privatization on the delivery costs of urban solid waste services. The results of our empirical analysis, which we conducted among a sample of very small municipalities, indicate that small towns that cooperate incur lower costs for their waste collection service. Cooperation also raises collection frequency and improves the quality of the service in small towns. By contrast, the form of production, whether it is public or private, does not result in systematic differences in costs. Interestingly, the degree of population dispersion has a significant positive relation with service costs. No evidence of scale economies is found because, it would seem, small municipalities exploit them by means of intermunicipal cooperation.
Resumo:
Pyro and hydrometallurgical processes were applied to the treatment of spent commercial zeolites (a molecular sieve and a ZSM-5 sample). Both catalysts were employed in pilot plant units. They were kept in their original shape, they were not regenerated and were not subjected neither to mechanical stress nor to overheating zones during their time on-stream. Two recycling processes were tested: (i) direct solubilization of samples in mixtures of HF + H2O2 (60 ºC, 1 h). Although silicon was solubilized, insoluble matter was found in both samples, particularly in the molecular sieve, due to its high amounts of alkaline and alkaline-earth metals; (ii) fusion with KHSO4 (5 h, 600 ºC) with KHSO4/zeolite mass ratio 6:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon as SiO2 residue. In both processes, solubilized metals were isolated by conventional selective precipitation techniques. Analysis of final products by common analytical methods shows that metals present in the original catalysts were recovered with very high yields except when the molecular sieve was treated with HF + H2O2. This reactant mixture proved to be suitable for processing zeolites with a low alkaline and alkaline-earth metal content whereas fusion with KHSO4 appeared to be adequate for all types of zeolites.
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
Catalysis by solid acids has received much attention due to its importance in petroleum refining and petrochemical processes. Relatively few studies have focused on catalysis by bases and even les on using basic molecular sieves. This paper deals with the potential application of micro and mesoporous molecular sieves in base catalysis reactions. The paper is divided in two parts, the first one dedicated to the design of the catalysts and the second to some relevant examples of catalytic reactions, which find a huge field of applications essentially in the synthesis of fine chemicals. Here, recent developments in catalysis by basic molecular sieves and the perspectives of applications in correlated catalytic processes are described.
Resumo:
This work describes a process for metal recovery from spent NiMo and CoMo/Al2O3 commercial hydrorefining catalysts. The samples were treated by fusion with potassium hydrogen sulfate (5 h, 600 ºC) with a KHSO4/catalyst mass ratio of 10:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon compounds as residue. Losses of nickel and cobalt may reach 16 wt% of the amount present in the sample, depending on the silicon content. Soluble metals were isolated by selective precipitation techniques (nickel, cobalt, aluminum) or by solvent extraction with methyl-isobutyl ketone (molybdenum) in a hydrochloric acid medium. All metals were recovered in very good yields except for nickel and cobalt in the presence of considerable amounts of silicon. Soluble wastes consist of potassium/sodium sulfates/chlorides. Solid wastes correspond to about 4 wt% of the catalyst and can be discarded in industrial dumps.
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
New chemical systems have been recently designed for the study of complex phenomena such as oscillatory dynamics in the temporal domain and spatiotemporal pattern formation. Systems derived from oscillators based on the chemistry of bromate are the most extensively studied, with the celebrated Belousov-Zhabotinsky (BZ) reaction being the most popular example. Problems such as the formation of bubbles (CO2) and solid precipitate in the course of the reaction and the occurrence of simply short-lived oscillations under batch conditions are very common and, in some cases, compromise the use of some of these systems. It is investigated in this paper the dynamic behavior of the bromate/hypophosphite/acetone/dual catalyst system, which has been sugested as an interesting alternative to circumvent those inconvenients. In this work, manganese and ferroin are employed as catalysts and the complete system (BrO3-/H2PO2-/acetone/Mn(II)-ferroin) is studied under batch conditions. Temporal symmetry breaking was studied in a reactor under agitation by means of simultaneous records of the potential changes of platinum and Ag/AgBr electrodes, both measured versus a reversible hydrogen electrode. Additionally, spatio-temporal formation of target patterns and spiral waves were obtained when the oscillating mixture was placed in a quasi two-dimensional reactor.
Resumo:
A liquid chromatography-tandem mass spectrometry method with atmospheric pressure chemical ionization (LC-APCI/MS/MS) was validated for the determination of etoricoxib in human plasma using antipyrin as internal standard, followed by on-line solid-phase extraction. The method was performed on a Luna C18 column and the mobile phase consisted of acetonitrile:water (95:5, v/v)/ammonium acetate (pH 4.0; 10 mM), run at a flow rate of 0.6 mL/min. The method was linear in the range of 1-5000 ng/mL (r²>0.99). The lower limit of quantitation was 1 ng/mL. The recoveries were within 93.72-96.18%. Moreover, method validation demonstrated acceptable results for the precision, accuracy and stability studies.