962 resultados para single electron transfer (SET)
Resumo:
We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a ΔpH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the ΔpH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the ΔpH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1′-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N,N′-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of ΔpH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.
Resumo:
The D2 polypeptide of the photosystem II (PSII) complex in the green alga Chlamydomonas reinhardtii is thought to be reversibly phosphorylated. By analogy to higher plants, the phosphorylation site is likely to be at residue threonine-2 (Thr-2). We have investigated the role of D2 phosphorylation by constructing two mutants in which residue Thr-2 has been replaced by either alanine or serine. Both mutants grew photoautotrophically at wild-type rates, and noninvasive biophysical measurements, including the decay of chlorophyll fluorescence, the peak temperature of thermoluminescence bands, and rates of oxygen evolution, indicate little perturbation to electron transfer through the PSII complex. The susceptibility of mutant PSII to photoinactivation as measured by the light-induced loss of PSII activity in whole cells in the presence of the protein-synthesis inhibitors chloramphenicol or lincomycin was similar to that of wild type. These results indicate that phosphorylation at Thr-2 is not required for PSII function or for protection from photoinactivation. In control experiments the phosphorylation of D2 in wild-type C. reinhardtii was examined by 32P labeling in vivo and in vitro. No evidence for the phosphorylation of D2 in the wild type could be obtained. [14C]Acetate-labeling experiments in the presence of an inhibitor of cytoplasmic protein synthesis also failed to identify phosphorylated (D2.1) and nonphosphorylated (D2.2) forms of D2 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results suggest that the existence of D2 phosphorylation in C. reinhardtii is still in question.
Resumo:
Solid-state NMR spectra of natural abundance 13C in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26 was measured. When the quinone acceptors were removed and continuous visible illumination of the sample was provided, exceptionally strong nuclear spin polarization was observed in NMR lines with chemical shifts resembling those of the aromatic carbons in bacteriochlorophyll and bacteriopheophytin. The observation of spin polarized 15N nuclei in bacteriochlorophyll and bacteriopheophytin was previously demonstrated with nonspecifically 15N-labeled reaction centers. Both the carbon and the nitrogen NMR studies indicate that the polarization is developed on species that carry unpaired electrons in the early electron transfer steps, including the bacteriochlorophyll dimer donor P860 and probably the bacteriopheophytin acceptor. I. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum; most lines were absorptive but the methine carbons of the porphyrin ring (alpha, beta, gamma, ) exhibited emissive polarization. The change in the sign of the hyperfine coupling at these sites indicates the existence of nodes in the spin density distribution on the tetrapyrrole cofactors flanking each methine carbon bridge.
Resumo:
Accurate quantum mechanical simulations of the primary charge transfer in photosynthetic reaction centers are reported. The process is modeled by three coupled electronic states corresponding to the photoexcited chlorophyll special pair (donor), the reduced bacteriopheophytin (acceptor), and the reduced accessory chlorophyll (bridge) that interact with a dissipative medium of protein and solvent degrees of freedom. The time evolution of the excited special pair is followed over 17 ps by using a fully quantum mechanical path integral scheme. We find that a free energy of the reduced accessory chlorophyll state approximately equal to 400 cm(-1) lower than that of the excited special pair state yields state populations in agreement with experimental results on wild-type and modified reaction centers. For this energetic configuration electron transfer is a two-step process.
Resumo:
The NIFL regulatory protein controls transcriptional activation of nitrogen fixation (nif) genes in Azotobacter vinelandii by direct interaction with the enhancer binding protein NIFA. Modulation of NIFA activity by NIFL, in vivo occurs in response to external oxygen concentration or the level of fixed nitrogen. Spectral features of purified NIFL and chromatographic analysis indicate that it is a flavoprotein with FAD as the prosthetic group, which undergoes reduction in the presence of sodium dithionite. Under anaerobic conditions, the oxidized form of NIFL inhibits transcriptional activation by NIFA in vitro, and this inhibition is reversed when NIFL is in the reduced form. Hence NIFL is a redox-sensitive regulatory protein and may represent a type of flavoprotein in which electron transfer is not coupled to an obvious catalytic activity. In addition to its ability to act as a redox sensor, the activity of NIFL is also responsive to adenosine nucleotides, particularly ADP. This response overrides the influence of redox status on NIFL and is also observed with refolded NIFL apoprotein, which lacks the flavin moiety. These observations suggest that both energy and redox status are important determinants of nif gene regulation in vivo.
Resumo:
Pumpkin leaves grown under high light (500-700 micromol of photons m-2.s-1) were illuminated under photon flux densities ranging from 6.5 to 1500 micromol.m-2.s-1 in the presence of lincomycin, an inhibitor of chloroplast protein synthesis. The illumination at all light intensities caused photoinhibition, measured as a decrease in the ratio of variable to maximum fluorescence. Loss of photosystem II (PSII) electron transfer activity correlated with the decrease in the fluorescence ratio. The rate constant of photoinhibition, determined from first-order fits, was directly proportional to photon flux density at all light intensities studied. The fluorescence ratio did not decrease if the leaves were illuminated in low light in the absence of lincomycin or incubated in darkness in the presence of lincomycin. The constancy of the quantum yield of photoinhibition under different photon flux densities strongly suggests that photoinhibition in vivo occurs by one dominant mechanism under all light intensities. This mechanism probably is not the acceptor side mechanism characterized in the anaerobic case in vitro. Furthermore, there was an excellent correlation between the loss of PSII activity and the loss of the D1 protein from thylakoid membranes under low light. At low light, photoinhibition occurs so slowly that inactive PSII centers with the D1 protein waiting to be degraded do not accumulate. The kinetic agreement between D1 protein degradation and the inactivation of PSII indicates that the turnover of the D1 protein depends on photoinhibition under both low and high light.
Resumo:
O aumento no consumo energético e a crescente preocupação ambiental frente à emissão de gases poluentes criam um apelo mundial favorável para pesquisas de novas tecnologias não poluentes de fontes de energia. Baterias recarregáveis de lítio-ar em solventes não aquosos possuem uma alta densidade de energia teórica (5200 Wh kg-1), o que as tornam promissoras para aplicação em dispositivos estacionários e em veículos elétricos. Entretanto, muitos problemas relacionados ao cátodo necessitam ser contornados para permitir a aplicação desta tecnologia, por exemplo, a baixa reversibilidade das reações, baixa potência e instabilidades dos materiais empregados nos eletrodos e dos solventes eletrolíticos. Assim, neste trabalho um modelo cinético foi empregado para os dados experimentais de espectroscopia de impedância eletroquímica, para a obtenção das constantes cinéticas das etapas elementares do mecanismo da reação de redução de oxigênio (RRO), o que permitiu investigar a influência de parâmetros como o tipo e tamanho de partícula do eletrocatalisador, o papel do solvente utilizado na RRO e compreender melhor as reações ocorridas no cátodo dessa bateria. A investigação inicial se deu com a utilização de sistemas menos complexos como uma folha de platina ou eletrodo de carbono vítreo como eletrodos de trabalho em 1,2-dimetoxietano (DME)/perclorato de lítio (LiClO4). A seguir, sistemas complexos com a presença de nanopartículas de carbono favoreceu o processo de adsorção das moléculas de oxigênio e aumentou ligeiramente (uma ordem de magnitude) a etapa de formação de superóxido de lítio (etapa determinante de reação) quando comparada com os eletrodos de platina e carbono vítreo, atribuída à presença dos grupos laterais mediando à transferência eletrônica para as moléculas de oxigênio. No entanto, foi observada uma rápida passivação da superfície eletrocatalítica através da formação de filmes finos de Li2O2 e Li2CO3 aumentando o sobrepotencial da bateria durante a carga (diferença de potencial entre a carga e descarga > 1 V). Adicionalmente, a incorporação das nanopartículas de platina (Ptnp), ao invés da folha de platina, resultou no aumento da constante cinética da etapa determinante da reação em duas ordens de magnitude, o qual pode ser atribuído a uma mudança das propriedades eletrônicas na banda d metálica em função do tamanho nanométrico das partículas, e estas modificações contribuíram para uma melhor eficiência energética quando comparado ao sistema sem a presença de eletrocatalisador. Entretanto, as Ptnp se mostraram não específicas para a RRO, catalisando as reações de degradação do solvente eletrolítico e diminuindo rapidamente a eficiência energética do dispositivo prático, devido ao acúmulo de material no eletrodo. O emprego de líquido iônico como solvente eletrolítico, ao invés de DME, promoveu uma maior estabilização do intermediário superóxido formado na primeira etapa de transferência eletrônica, devido à interação com os cátions do líquido iônico em solução, o qual resultou em um valor de constante cinética da formação do superóxido de três ordens de magnitude maior que o obtido com o mesmo eletrodo de carbono vítreo em DME, além de diminuir as reações de degradação do solvente. Estes fatores podem contribuir para uma maior potência e ciclabilidade da bateria de lítio-ar operando com líquidos iônicos.
Resumo:
Sais de diazônio são um classe de compostos amplamente usados em química orgânica. Sua aplicação abrange uma gama de sínteses desde corantes até reações de hetero-acoplamento para produção de fármacos, mas pouco é conhecido de sua redução eletroquímica para fins sintéticos. As metodologias empregadas na redução de sais de diazônio geralmente envolvem o uso de metais ou compostos capazes de transferir elétrons como Pd, Cu ou tetratiafulvaleno. Neste trabalho é descrita a redução eletroquímica de dois sais de diazônio: tetrafluoroborato de 2-(2-propen-1-ilóxi)benzenodiazônio (1) e tetrafluoroborato de 2-(2-propen-1-iltio)benzenodiazônio (2) usando três eletrodos: Pt, Hg e pó de grafite. Quando foi feita a eletrólise de (1) utilizando cátodo de Hg vários produtos foram formados envolvendo uma reação de ciclização intramolecular, porém não conseguimos separá-los pelos métodos cromatográficos. A eletrólise de (2) em condições experimentais similares conduziu a uma mistura complexa de produtos provavelmente devido a uma interação do Hg com o átomo de enxofre do substrato e seus produtos de redução. Usando o cátodo de Pt e sal (1) a reação não foi eficiente pois ocorria uma queda brusca da corrente, provavelmente devido ao bloqueio da superfície do eletrodo. Concernente ao eletrodo de pó de grafite, apenas alguns experimentos preliminares foram feitos, portanto uma análise de seu desemprenho é prematura.
Resumo:
The main goal of this project was to develop an efficient methodology allowing rapid access to structurally diverse scaffolds decorated with various functional groups. Initially, we discovered and subsequently developed an experimentally straightforward, high-yielding photoinduced conversion of readily accessible diverse starting materials into polycyclic aldehydes and their (hemi)acetals decorated by various pendants. The two step sequence, involving the Diels-Alder addition of heterocyclic chalcones and other benzoyl ethylenes to a variety of dienes, followed by the Paternò-Büchi reaction, was described as an alkene-carbonyl oxametathesis. This methodology offers a rapid increase in molecular complexity and diversity of the target scaffolds. To develop this novel methodology further and explore its generality, we directed our attention to the Diels-Alder adducts based on various chromones. We discovered that the Diels-Alder adducts of chromones are capable of photoinduced alkene-arene [2+2] cycloaddition producing different dienes, which can either dimerize or be introduced into a double-tandem [4π+2π]·[2π+2π]·[4π+2π]·[2π+2π] synthetic sequence, followed by an acid-catalyzed oxametathesis, leading to a rapid expansion of molecular complexity over a few experimentally simple steps. In view of the fact that oxametathesis previously was primarily observed in aromatic oxetanes, we decided to prepare model aliphatic oxetanes with a conformationally unconstrained or "flexible" methyl group based on the Diels-Alder adducts of cyclohexadiene or cyclopentadiene with methyl vinyl ketone. Upon addition of an acid, the expected oxametathesis occurred with results similar to those observed in the aromatic series proving the generality of this approach. Also we synthesized polycyclic oxetanes resulting from the Diels-Alder adducts of cyclic ketones. This not only gave us access to remarkably strained oxetane systems, but also the mechanism for their protolytic ring opening provided a great deal of insight to how the strain affects the reactivity. Additionally, we discovered that although the model Hetero-Diels-Alder adducts did not undergo [2+2] cycloaddition, both exo- and endo-Sulfa-Diels-Alder products, nonetheless, were photochemically active and various products with defined stereochemistry could be produced upon photolysis. In conclusion, we have developed an approach to the encoding and screening of solution phase libraries based on the photorelease of externally sensitized photolabile tags. The encoding tags can be released into solution only when a binding event occurs between the ligand and the receptor, equipped with an electron transfer sensitizer. The released tags are analyzed in solution revealing the identity of the lead ligand or narrowing the range of potential leads.
Resumo:
We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, such as chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, such as a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.
Resumo:
We report on the optical spectroscopy of the spin of two magnetic atoms (Mn) embedded in an individual quantum dot interacting with a single electron, a single exciton, or a single trion. As a result of their interaction to a common entity, the Mn spins become correlated. The dynamics of this process is probed by time-resolved spectroscopy, which permits us to determine an optical orientation time in the range of a few tens of nanoseconds. In addition, we show that the energy of the collective spin states of the two Mn atoms can be tuned through the optical Stark effect induced by a resonant laser field.
Resumo:
A (II,Mn)VI diluted magnetic semiconductor quantum dot with an integer number of electrons controlled with a gate voltage is considered. We show that a single electron is able to induce a collective spontaneous magnetization of the Mn spins, overcoming the short range antiferromagnetic interactions, at a temperature order of 1 K, 2 orders of magnitude above the ordering temperature in bulk. The magnetic behavior of the dot depends dramatically on the parity of the number of electrons in the dot.
Resumo:
In the present Letter several carbolactones (oxidative products) are obtained under aprotic cathodic conditions in the preparative scaled electrolysis of 1,2-quinones in a divided electrochemical cell and in the presence of oxygen. When 9,10-phenanthrenequinone is reduced 6H-dibenzo[b,d]pyran-6-one and [1,1′-biphenyl]-2,2′-dicarboxylic acid are obtained as major products. In the reduction of 1,2-naphthoquinone, 2-benzopyran-1(1H)-one, and 2-(2-carboxyethenyl)-benzoic acid were formed as main products. The proposed mechanism to explain the formation of these and other products, that involves an electron-transfer reaction to the oxygen in air, is now discussed.
Resumo:
TiO2 nanotubes (NTs) have been widely used for a number of applications including solar cells, photo(electro)chromic devices, and photocatalysis. Their quasi-one-dimensional morphology has the advantage of a fast electron transport although they have a relatively reduced interfacial area compared with nanoparticulate films. In this study, vertically oriented, smooth TiO2 NT arrays fabricated by anodization are decorated with ultrathin anatase nanowires (NWs). This facile modification, performed by chemical bath deposition, allows to create an advantageous self-organized structure that exhibits remarkable properties. On one hand, the huge increase in the electroactive interfacial area induces an improvement by 1 order of magnitude in the charge accumulation capacity. On the other hand, the modified NT arrays display larger photocurrents for water and oxalic acid oxidation than bare NTs. Their particular morphology enables a fast transfer of photogenerated holes but also efficient mass and electron transport. The importance of a proper band energy alignment for electron transfer from the NWs to the NTs is evidenced by comparing the behavior of these electrodes with that of NTs modified with rutile NWs. The NT-NW self-organized architecture allows for a precise design and control of the interfacial surface area, providing a material with particularly attractive properties for the applications mentioned above.
Resumo:
The electrochemical reactions of dopamine, catechol and methylcatechol were investigated at tetrahedral amorphous carbon (ta-C) thin film electrodes. In order to better understand the reaction mechanisms of these molecules, cyclic voltammetry with varying scan rates was carried out at different pH values in H2SO4 and PBS solutions. The results were compared to the same redox reactions taking place at glassy carbon (GC) electrodes. All three catechols exhibited quasi-reversible behavior with sluggish electron transfer kinetics at the ta-C electrode. At neutral and alkaline pH, rapid coupled homogeneous reactions followed the oxidation of the catechols to the corresponding o-quinones and led to significant deterioration of the electrode response. At acidic pH, the extent of deterioration was considerably lower. All the redox reactions showed significantly faster electron transfer kinetics at the GC electrode and it was less susceptible toward surface passivation. An EC mechanism was observed for the oxidation of dopamine at both ta-C and GC electrodes and the formation of polydopamine was suspected to cause the passivation of the electrodes.