909 resultados para silica
Resumo:
Reliable spectral analysis is only achieved if the spectrum is thoroughly investigated in regard to all hidden and overlapped peaks. This paper describes the steps undertaken to find and separate such peaks in the range of 3000 to 4000 cm(-1) in the case of three different infrared absorption spectra of the glass surface of hydrolyzed silica optical fibers. Peak finding was done by the analysis of the second and fourth derivatives of the digital data, coupled with the available knowledge of infrared spectroscopy of silica-water interaction in the investigated range. Peak separation was accomplished by curve fitting with four different models. The model with the best fit was described by a sum of pure Gaussian peaks. Shoulder limit and detection limit maps were used to validate the revealed spectral features.
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Penicillin G acylase is the second most important enzyme used by industry in an immobilized form. Penicillin hydrolysis is its main application. This reaction is used to produce 6-aminopenicillanic acid (6-APA), an intermediate in the synthesis of semisynthetic antibiotics. This work aims to compare catalytic properties of different penicillin G acylase (PGA) derivatives obtained by multipoint immobilization of the enzyme on macroporous silica. Enzyme amino groups react with different aldehyde groups produced in the support using either glutaraldehyde or glyoxyl activation. In the former method, silica reacts with g-aminopropyltriethoxysilane (g-APTS) and glutaraldehyde; in the latter, a reaction with glycidoxypropyltrimethoxysilane (GPTMS) is followed by acid hydrolysis and oxidation using sodium periodate. This work determines the influence of degree of activation, using glutaraldehyde, on immobilization parameters. PGA was immobilized on these two different supports. Maximum enzyme load, immobilized enzyme activity (derivative activity), rate of immobilization and thermal stability were checked for both cases. For glutaraldehyde activation, the results showed that 0.5% of the g-APTS is sufficient for all the hydroxyl groups in the silica to react. They also showed that degree of activation only affects immobilization yield and reaction velocity and that reduction of the glutaraldehyde derivatives with sodium borohydride does not affect their thermal stability. In comparing the derivatives obtained using glyoxyl and glutaraldehyde activation, it was observed that the glyoxyl derivatives presented better immobilization parameters, with a maximum enzyme load of 264 IU/g silica and a half-life of 20 minutes at 60 °C.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r(w)) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from similar to2.1 to similar to2.4 and mass-fractal correlation length xi diminishing from similar to13 nm to similar to2 nm, as r(w) is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500degreesC, in general, increases the mass-fractal dimension D, diminishes the characteristic length xi of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as similar to2.4 and similar to2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the secondary particle developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from similar to2.4 to similar to2.0 and from similar to2.7 to similar to2.5, respectively, as the aerogel bulk density increases from 0.25 (r(w)=66) up to 0.91 g/cm(3) (r(w)=6).
Resumo:
The aim of this work was to develop an efficient reactor for the production of low methoxyl pectin, using pectinmethylesterase (PME, EC 3.1.1.11) from acerola immobilized on silica. The immobilized enzyme was used in up to 50 successive bioconversion runs at 50 degrees C with an efficiency loss of less than 20%. The fixed-bed reactor (6.0 x 1.5 cm) was prepared using PME immobilized in glutaraldehyde-activated silica operated at 50 degrees C with an optimum flow rate of 10 mL h(-1). The bioconversion yield was shown to strongly depend on the nature of the enzymatic preparation. An efficiency of 44% was achieved when concentrated PME was used, compared with only 30% with purified PME, both after an 8-h run. The process described could provide the basis for the development of a commercial-scale process. (c) 2006 Society of Chemical Industry.
Resumo:
Silica particles were obtained by addition of diluted soluble sodium silicate in sodium 1,2 bis (2-ethylhexyloxycarbonyl)-1-ethenesulfonate reverse microemulsions, in which aqueous phase was nitric acid solution and the water/surfactant ratio (W) was 5 or 10. Products, whether washed or not, were dried at 100 degrees C and suspended in different solvents: heptane, water, kerosene or pentane for making SEM measurements. Thermal treatments of washed silica samples were carried out at 900 degrees C and 1200 degrees C. Silica particles of sizes from 1 to 10 mu m were obtained at room temperature without changing their shape due to thermal treatment and crystallization. SEM micrographs show hollow particles suggesting that silica preferably polymerizes on microemulsion droplet interface where ionic strength of nitric acid aqueous solution is favourable for silica polymerization reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The total and partially purified enzyme pectinmethylesterase from acerola fruit was covalently immobilized on porous silica particles. These efficiency values were 114% for the total PME and 351% for the partially purified PME. In both forms the immobilization resulted in compounds with high thermal stability.
Resumo:
A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.
Resumo:
MCM-41 material was synthesized starting from hydrogel containing colloidal fumed silica, sodium silicate, cetyltetramethylammonium bromide (CTMABr) as surfactant, and distilled water as solvent. These reactants were mixed to obtain a gel with the following composition: 4SiO(2):1Na(2)O:1CTMABr:200H(2)O. The hydrogel with pH=14 was hydrothermally treated at 100 degreesC, for 4 days. Each day, the pH was measured, and then adjusted to 9.5-10 by using 30% acetic acid solution. Thermogravimetry was the main technique, which was used to monitor the participation of the surfactant on the MCM-41 nanophase, being possible to determine the temperature ranges relative to water desorption as well as the surfactant decomposition and silanol condensation.
Resumo:
This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950degreesC for 120 h with a heating rate of 0.1degreesC/min. We studied the luminescence properties of the I-4(13/2)-->I-4(15/2) emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.