982 resultados para reproductive potential
Resumo:
Background Pharmaceuticals are big business, reporting strong market growth year after year. The ‘gatekeepers’ of this market are prescribers of medicines, who are the major target of pharmaceutical companies, utilizing direct and indirect influences. Methods This paper draws on previous research investigating pharmaceutical company prescribing influences to develop a qualitative model demonstrating the synergism between commercial influences on prescribing. The generic model was used to explore a realistic but hypothetical scenario to ascertain the applicability of the model. Results and Discussion A generic influence model was developed. The model was readily able to be adapted to reflect a realistic practice scenario. Conclusion Prescriber awareness of the linkages between various seemingly separate marketing techniques could potentially improve medicines usage in an evidence-based practice paradigm.
Resumo:
Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.
Potential role of EPB41L3 (Protein 4.1B/Dal-1) as a target for treatment of advanced prostate cancer
Resumo:
Background: Loss of erythrocyte membrane protein band 4.1-like 3 (EPB41L3; aliases: protein 4.1B, differentially expressed in adenocarcinoma of the lung-1 (Dal-1)) expression has been implicated in tumor progression. Objective: To evaluate literature describing the role of EPB41L3 in tumorigenesis and metastasis, and to consider whether targeting this gene would be useful in the treatment of prostate cancer. Methods: A literature review of studies describing EPB41L3 and its aliases was conducted. Online databases (NCBI, SwissProt) were also interrogated to collect further data. Results/conclusion: A growing body of evidence supports a role for loss of EPB41L3 in tumor progression, including in prostate cancer. Therapeutic strategies that could be harnessed to upregulate EPB41L3 gene expression in prostate cancer cells are currently being developed.
Resumo:
Purpose: We examine the interaction between trait resilience and control in predicting coping and performance. Drawing on a person–environment fit perspective, we hypothesized resilient individuals would cope and perform better in demanding work situations when control was high. In contrast, those low in resilience would cope and perform better when control was low. Recognizing the relationship between trait resilience and performance also could be indirect, adaptive coping was examined as a mediating mechanism through which high control enables resilient individuals to demonstrate better performance. Methodology: In Study 1 (N = 78) and Study 2 (N = 94), participants completed a demanding inbox task in which trait resilience was measured and high and low control was manipulated. Study 3 involved surveying 368 employees on their trait resilience, control, and demand at work (at Time 1), and coping and performance 1 month later at Time 2. Findings: For more resilient individuals, high control facilitated problem-focused coping (Study 1, 2, and 3), which was indirectly associated with higher subjective performance (Study 1), mastery (Study 2), adaptive, and proficient performance (Study 3). For more resilient individuals, high control also facilitated positive reappraisal (Study 2 and 3), which was indirectly associated with higher adaptive and proficient performance (Study 3). Implications: Individuals higher in resilience benefit from high control because it enables adaptive coping. Originality/value: This research makes two contributions: (1) an experimental investigation into the interaction of trait resilience and control, and (2) investigation of coping as the mechanism explaining better performance.
Resumo:
Economic conditions around the world are likely to deteriorate in the short to medium term. The potential impact of this crisis on the spread of HIV is not clear. Government revenues and aid flows from international donors may face constraints, possibly leading to reductions in funding for HIV programs. Economic conditions (leading to increases in unemployment, for example) may also have an indirect impact on HIV epidemics by affecting the behaviour of individual people. Some behavioural changes may influence the rate of HIV transmission. This report presents findings from a study that investigates the potential impact of the economic crisis on HIV epidemics through the use of mathematical modelling. The potential epidemiological impacts of changes in the economy are explored for two distinctly characterised HIV epidemics: (i) a well-defined, established, and generalised HIV epidemic (specifically Cambodia, where incidence is declining); (ii) an HIV epidemic in its early expansion phase (specifically Papua New Guinea, where incidence has not yet peaked). Country-specific data are used for both settings and the models calibrated to accurately reflect the unique HIV epidemics in each population in terms of both incidence and prevalence. Models calibrated to describe the past and present epidemics are then used to forecast epidemic trajectories over the next few years under assumptions that behavioural or program conditions may change due to economic conditions. It should be noted that there are very limited solid data on how HIV/AIDS program funds may decrease or how social determinants related to HIV risk may change due to the economic crisis. Potential changes in key relevant factors were explored, along with sensitivity ranges around these assumptions, based on extensive discussions with in-country and international experts and stakeholders. As with all mathematical models, assumptions should be reviewed critically and results interpreted cautiously.
Resumo:
BACKGROUND: Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. CONTENT: As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. SUMMARY: Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance. (C) 2011 American Association for Clinical Chemistry
Resumo:
Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance.
Resumo:
Abstract: Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b 5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Nanostructured TiO2 electrodes are employed to probe the electron-transfer process of cytochrome b5 by surface-enhanced resonance Raman spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, the enhancement factor increases, which can be attributed to the electric field enhancement. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper describes a design framework intended to conceptually map the influence that game design has on the creative activity people engage in during gameplay. The framework builds on behavioral and verbal analysis of people playing puzzle games. The analysis was designed to better understand the extent to which gameplay activities within different games facilitate creative problem solving. We have used an expert review process to evaluate these games in terms of their game design elements and have taken a cognitive action approach to this process to investigate how particular elements produce the potential for creative activity. This paper proposes guidelines that build upon our understanding of the relationship between the creative processes that players undertake during a game and the components of the game that allow these processes to occur. These guidelines may be used in the game design process to better facilitate creative gameplay activity.
Resumo:
--Critically discusses the role of International Maritime Organization (IMO) in the protection of the marine environment --Presents a clear, updated, concise and critical overview of the IMO marine environmental legal instruments --A fresh outlook on the north-south tensions in the IMO marine environmental discourses --Critically examines the principle of common but differentiated responsibilities in the context of IMO This book examines the role of The International Maritime Organization (IMO) in the prevention and control of pollution of the marine environment from vessels with a particular reference to the current north-south tensions regarding the strategy for combating climate change in the maritime sector as well as the prevention of marine pollution from the ship-breaking industry. The IMO, a United Nations specialized agency, has been entrusted with the duty to provide machinery for cooperation among governments for the prevention and control of pollution of the marine environment from vessels. The organization is responsible for drafting legal instruments as well as for facilitating technical cooperation for the protection of the marine environment. Although IMO legal instruments are mainly targeted at the prevention of pollution of the marine environment from vessels, there is a trend towards a liberal interpretation of this, and the organization has expanded its work to areas like shipbreaking, which is essentially a land-based industry.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
Understanding the natural variability of the Earth's climate system and accurately identifying potential anthropogenic influences requires long term, geographically distributed records of key climate indicators, such as temperature and precipitation that extend prior to the last 400. years of the Holocene. Reef corals provide an excellent source of high resolution climate records, and importantly represent the tropical marine environment where palaeoclimate data are urgently required. Recent decades have seen significant improvement in our understanding of coral biomineralisation, the associated uptake of geochemical proxies and methods of identifying and understanding the effects of both early and late, post depositional diagenetic alteration. These processes all have significant implications for interpreting geochemical proxies relevant to palaeoclimatic reconstructions. This paper reviews the current 'state of the art' in terms of coral based palaeoclimate reconstructions and highlights a key remaining problem. The majority of coral based palaeoclimate research has been derived from massive colonies of Porites. However, massive Porites are not globally abundant and may not provide material of a particular age of interest in those regions where they are present. Therefore, there is great potential for alternate coral genera to act as complimentary climate archives. While it remains critical to consider five key factors - vital effects, differential growth morphologies, geochemical heterogeneity in the skeletal ultrastructure, transfer equation selection and diagenetic screening of skeletal material - in order to allow the highest level of accuracy in coral palaeoclimate reconstructions, it is also important to develop alternate taxa for palaeoclimate studies in regions where Porites colonies are absent or rare. Currently as many as nine genera other than Porites have proven at least limited utility in palaeothermometry, most of which are found in the Atlantic/Caribbean region where massive Porites do not exist. Even branching taxa such as Acropora have significant potential to preserve environmental archives. Increasing this capability will greatly expand the number of potential geochemical archives available for longer term temporal records of palaeoclimate.
Resumo:
While the neural regions associated with facial identity recognition are considered to be well defined, the neural correlates of non-moving and moving images of facial emotion processing are less clear. This study examined the brain electrical activity changes in 26 participants (14 males M = 21.64, SD = 3.99; 12 females M = 24.42, SD = 4.36), during a passive face viewing task, a scrambled face task and separate emotion and gender face discrimination tasks. The steady state visual evoked potential (SSVEP) was recorded from 64-electrode sites. Consistent with previous research, face related activity was evidenced at scalp regions over the parieto-temporal region approximately 170 ms after stimulus presentation. Results also identified different SSVEP spatio-temporal changes associated with the processing of static and dynamic facial emotions with respect to gender, with static stimuli predominately associated with an increase in inhibitory processing within the frontal region. Dynamic facial emotions were associated with changes in SSVEP response within the temporal region, which are proposed to index inhibitory processing. It is suggested that static images represent non-canonical stimuli which are processed via different mechanisms to their more ecologically valid dynamic counterparts.