973 resultados para rectangular aquarium
Resumo:
ART networks present some advantages: online learning; convergence in a few epochs of training; incremental learning, etc. Even though, some problems exist, such as: categories proliferation, sensitivity to the presentation order of training patterns, the choice of a good vigilance parameter, etc. Among the problems, the most important is the category proliferation that is probably the most critical. This problem makes the network create too many categories, consuming resources to store unnecessarily a large number of categories, impacting negatively or even making the processing time unfeasible, without contributing to the quality of the representation problem, i. e., in many cases, the excessive amount of categories generated by ART networks makes the quality of generation inferior to the one it could reach. Another factor that leads to the category proliferation of ART networks is the difficulty of approximating regions that have non-rectangular geometry, causing a generalization inferior to the one obtained by other methods of classification. From the observation of these problems, three methodologies were proposed, being two of them focused on using a most flexible geometry than the one used by traditional ART networks, which minimize the problem of categories proliferation. The third methodology minimizes the problem of the presentation order of training patterns. To validate these new approaches, many tests were performed, where these results demonstrate that these new methodologies can improve the quality of generalization for ART networks
Resumo:
This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented
Resumo:
The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison
Resumo:
In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern
Resumo:
This paper presents a theoretical and numerical analysis of the parameters of a rectangular microstrip antenna with metamaterial substrate. The metamaterial (MTM) theory was applied along with Transverse Transmission Line (LTT) method to characterize substrate quantities and obtain the general equations of the electromagnetic fields. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. Electromagnetic principes are used to obtained parameters such as complex resonance frequency, bandwidth and radiation pattern were then obtained. Different metamaterial and antenna configurations were simulated to miniaturize them physically and increase their bandwidth, the results of which are shown through graphics. The theoretical computational analysis of this work proved to be accurate when compared to other studies, and may be used for other metamaterial devices. Conclusions and suggestions for future work are also proposed
Resumo:
This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented
Resumo:
The main objective in this work is the analysis of resonance frequency microstrip structures with glass fiber and electromagnetic band gap (EBG/PBG) substrate and analysis of microstrip antennas with rectangular patch of superconductor of high critical temperature (HTS). In this work was used the superconductors YBCO (critical temperature of 90K), SnBaCaCuOy (critical temperature of 160K), and Sn5InCa2Ba4Cu10Oy (critical temperature of 212K) with results in Gigahertz and Terahertz. Was used microstrip antennas arrays planar and linear phase and linear phase planar with patch with superconductor. It presents a study of the major theories that explain superconductivity. In phase arrays were obtained the factors arrays for such configurations, and the criteria of phase and spacing between the elements compound in the array, which were examined in order to get a main lobe with high directivity and high gain. In the analysis we used the method of Transverse Transmission Line (TTL) used in domain of the Fourier Transform (FTD). The LTT is a full wave method, which obtains the electromagnetic field in terms of the components transverse of the structure. The addition of superconductive patch is made using the boundary condition resistive complex. Results are obtained resonance frequency as a function of the parameters of the antenna, radiation patterns of the E and H Planes, for the phase antenna arrays in linear and planar configurations, for different values of the phase and the spacing between elements
Resumo:
This work consists in the development of a theoretical and numerical analysis for frequency selective surfaces (FSS) structures with conducting patch elements, such as rectangular patches, thin dipoles and cross dipoles, on anisotropic dielectric substrates. The analysis is developed for millimeter wave band applications. The analytical formulation is developed in the spectral domain, by using a rigorous technique known as equivalent transmission line method, or immitance approach. The numerical analysis is completed through the use of the Galerkin's technique in the Fourier transform domain, using entire-domain basis functions. In the last decades, several sophisticated analytical techniques have been developed for FSS structure applications. Within these applications, it can be emphasized the use of FSS structures on reflecting antennas and bandpass radomes. In the analysis, the scattered fields of the FSS geometry are related to the surface induced currents on the conducting patches. After the formulation of the scattering problem, the numerical solution is obtained by using the moment method. The choice of the basis functions plays a very important role in the numerical efficiency of the numerical method, once they should provide a very good approximation to the real current distributions on the FSS analyzed structure. Thereafter, the dyadic Green's function components are obtained in order to evaluate the basis functions unknown coefficients. To accomplish that, the Galerkin's numerical technique is used. Completing the formulation, the incident fields are determined through the incident potential, and as a consequence the FSS transmission and reflection characteristics are determined, as function of the resonant frequency and structural parameters. The main objective of this work was to analyze FSS structures with conducting patch elements, such as thin dipoles, cross dipoles and rectangular patches, on anisotropic dielectric substrates, for high frequency applications. Therefore, numerical results for the FSS structure main characteristics were obtained in the millimeter wave bando Some of these FSS characteristics are the resonant
Resumo:
The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results
Resumo:
Metamaterials have attracted a great attention in recent years mostly due to their electromagnetic properties not found in nature. Since metamaterials began to be synthesized by the insertion of artificially manufactured inclusions in a medium specified host , it provides the researcher a broad collection of independent parameters such as the electromagnetic properties of the material host. In this work was presents an investigation of the unique properties of Split Ring Resonators and compounds metamaterials was performed. We presents a theoretical and numerical analysis , using the full-wave formalism by applying the Transverse Transmission Line - LTT method for the radiation characteristics of a rectangular microstrip antenna using metamaterial substrate, as is successfully demonstrated the practical use of these structures in antennas. We experimentally confirmed that composite metamaterial can improved the performance of the structures considered in this thesis
Resumo:
This work presents a theoretical and numerical analysis of Frequency Selective Surfaces (FSS) with elements as rectangular patch, thin dipole and crossed dipole mounted on uniaxial anisotropic dielectric substrate layers for orientations of the optical axis along x, y and z directions. The analysis of these structures is accomplished by combination of the Hertz vector potentials method and the Galerkin's technique, in the Fourier transform-domain, using entire¬domain basis functions. This study consists in the use of one more technique for analysis of FSS on anisotropic dielectric substrate. And presents as the main contribution the introduction of one more project parameter to determinate the transmission and reflection characteristics of periodic structures, from the use of anisotropic dielectric with orientations of the crystal optical axis along x, y and z directions. To validate this analysis, the numerical results of this work are compared to those obtained by other authors, for FSS structures on anisotropic and isotropic dielectric substrates. Also are compared experimental results and the numerical correspondent ones for the FSS isotropic case. The technique proposed in this work is accurate and efficient. ln a second moment, curves are presented for the transmission and reflection characteristics of the FSS structures using conducting patch elements mounted on uniaxial anisotropic dielectric substrate layers with optical axis oriented along x, y and z directions. From analysis of these curves, the performance of the considered FSS structures as function of the optical axis orientation is described
Resumo:
Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure
Resumo:
This work is the analysis of a structure of the microstrip antenna designed for application in ultra wide band systems (Ultra Wideband - UWB). This is a prospective analytical study where they tested the changes in the geometry of the antenna, observing their suitability to the proposed objectives. It is known that the UWB antenna must operate in a range of at least 500 MHz, and answer a fractional bandwidth greater than or equal to 25%. It is also desirable that the antenna meets the specifications of track determined by FCC - Federal Communication Commission, which regulates the system in 2002 designating the UWB bandwidth of 7.5 GHz, a range that varies from 3.1 GHz to 10, 6 GHz. by setting the maximum power spectral density of operation in -41.3 dB / MHz, and defining the fractional bandwidth by 20%. The study starts of a structure of geometry in the form of stylized @, which evolves through changes in its form, in simulated commercial software CST MICROWAVE STUDIO, version 5.3.1, and then tested using the ANSOFT HFSS, version 9. These variations, based on observations of publications available from literature referring to the microstrip monopole planar antennas. As a result it is proposed an antenna, called Monopole Antenna Planar Spiral Almost Rectangular for applications in UWB systems - AMQEUWB, which presents simulated and measured results satisfactory, consistent with the objectives of the study. Some proposals for future work are mentioned
Resumo:
This work presents a theoretical and numerical analysis for the cascading of frequency selective surfaces, which uses rectangular patches and triangular Koch fractals as elements. Two cascading techniques are used to determine the transmission and reflection characteristics. Frequency selective surfaces includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc.. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. Furthermore, the analyses uses the microwave circuit theory, with the Floquet harmonics, it allows to obtain the expressions of the scattering parameters of each structure and also of the composed structure of two or more FSS. In this work, numeric results are presented for the transmission characteristics. Comparisons are made with experimental results and simulated results using the commercial software Ansoft Designer® v3. Finally, some suggestions are presented for future works on this subject