947 resultados para pulp samples
Resumo:
In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.
Resumo:
It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.
Resumo:
The objective of this study was to monitor 11 organophosphorus pesticides in samples of papaya, bell pepper, and banana, commercialized in the metropolitan area of Vitória (ES, Brazil). The pesticides were determined by an optimized and validated method using high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). All three samples exhibited a matrix effect for most of the pesticides, mainly with signal suppression, and therefore the calibration curves were produced in matrices. Linearity revealed coefficients of determination (r2) greater than 0.9895 for all pesticides and recovery results ranged from between 76% and 118% with standard deviation no greater than 16%. Precision showed relative standard deviation values lower than 19% and HorRat values lower than 0.7, considering all pesticides. Limits of quantification were less than 0.01 mg/kg for all pesticides. Regarding analysis of the samples (50 of each), none of the pesticides exceeded the maximum residue limit determined by Brazilian legislation.
Resumo:
Various strength properties of paper are measured to tell how well it resists breaks in a paper machine or in printing presses. The most often measured properties are dry tensile strength and dry tear strength. However, in many situations where paper breaks, it is not dry. For example, in web breaks after the wet pressing the dry matter content can be around 45%. Thus, wet-web strength is often a more critical paper property than dry strength. Both wet and dry strength properties of the samples were measured with a L&W tensile tester. Originally this device was not designed for the measurement of the wet web tensile strength, thus a new procedure to handle the wet samples was developed. The method was tested with Pine Kraft (never dried). The effect of different strength additives on the wet-web and dry paper tensile strength was studied. The polymers used in this experiment were aqueous solution of a cationic polyamidoamine-epichlorohydrin resin (PAE), cationic hydrophilised polyisocyanate and cationic polyvinylamine (PVAm). From all three used chemicals only Cationic PAE considerably increased the wet web strength. However it was noticed that at constant solids content all chemicals decreased the wet web tensile strength. So, since all chemicals enhanced solid content it can be concluded that they work as drainage aids, not as wet web strength additives. From all chemicals only PVAm increased the dry strength and two other chemicals even decreased the strength. As chemicals were used in strong diluted forms and were injected into the pulp slurry, not on the surface of the papersheets, changes in samples densities did not happen. Also it has to be noted that all these chemicals are mainly used to improve the wet strength after the drying of the web.
Resumo:
The UPM-Kymmene Oyj Pietarsaari pulp and paper Mill biological wastewater treatment plant was built in the 1980's and the plant has been in use ever since. During the past years there have been problems with deviations. The wastewater treatment plant needs update, especially the aeration basin, where the old surface aerators cannot produce enough mixing and indroduce oxygen enough to the wastewater. In this thesis how extra aeration with oxygen affects the wastewater treatment plant effluent was studied. In the literature part the main focus is in aeration devices, which can be used in biological wastewater treatment. The target is to compare different kind of aerators, which are suitable for pulp and paper wastewater treatment. Studies show, that EDI-aerators are commonly used and also most suitable. In the experimental part, the focus is on the Pietarsaari Mills wastewater treatment plant and oxygen aeration during autumn 2008. This thesis presents the results of the trial run. Studies show, that extra oxygen devices can produce lot a of mixing and the oxygenation capacity was more than what the micro-organisms needed. The effect on sludge quality could not been seen during the trial runs.
Resumo:
The correct utilization of non-wood raw material allows reducing tree cutting and reduces emissions of carbon dioxide from burning of non-wood plants on farmers fields. Also it allows increasing economical situation in regions that non-wood plants are grown and where they are converted into pulp and paper. Also it gives positive effect on population pressure of work by addition of working place. In the literature survey included an overview of the historical meaning of non-wood pulp on developing paper production and structure of non-wood pulps. Moreover, anatomical and chemical composition of straw, reed and bamboo were studied more detailed. Also, an overview of the utilization of non-wood pulp in papermaking was made. Especially tissue, tree-free and release papers were reviewed. In the experimental part the goal was to investigate suitability of non-wood pulp like wheat straw pulp and bamboo pulp for different fiber products. Finally release and tree-free paper products were selected for experimental studies. It was discovered that wheat straw, especially screened wheat straw, showed good results for release paper. Also utilization of wheat straw and bamboo pulp in tree-free paper showed good results and suitability of these non-wood pulps for tree-free paper production. Also it was noticed that addition of wheat straw pulp gave positive effect on initial wet strength for release and tree-free paper.
Resumo:
Taivekartongilta vaaditaan nykyisin korkealaatuista ja tasaista ulkonäköä. Pakkauksen tehtävänä on parantaa myyntiä hyvällä ulkonäöllä ja siisteydellä sekä antaa informaatiota ja käyttöohjeita. Tässä diplomityössä tutkittiin taivekartongin sävyttämistä, optisia ominaisuuksia sekä vaaleuden ja sävyjen pysyvyyttä. Kirjallisuusosassa käsiteltiin paperin ja kartongin optisia ominaisuuksia sekä esiteltiin Kubelka-Munkin teoria. Teoriaa voidaan käyttää mm. monikerroskartongin vaaleuden ja sävyjen mallintamisessa. Esillä oli paljon eri prosessitekijöitä, massoja ja kemikaaleja, jotka vaikuttavat kartongin vaaleuteen ja sävyyn. Työssä kärsiteltiin myös keinoja vaikuttaa kartongin sävyyn sävytyksellä ja sävytyksen eri tapoja. Toisaalta vaaleuden ja sävyn pysyvyyteen vaikuttaa kartongin jälkikellertyminen. Työssä tarkasteltiin jälkikellertymisen mekanismeja ja siihen vaikuttavia tekijöitä sekä esitettiin keinoja ennalta ehkäistä ja estää kellertymistä. Kokeellisessa osassa käsiteltiin massan ja päällystyspastan värjäyksen vaikutuksia ulkonäköön ja optisiin ominaisuuksiin. Sinertävillä tai violeteilla sävyväreillä voidaan pienentää mekaanisten massojen luonnollista kellertyvyyttä, jolloin valkoisuuden vaikutelma lisääntyy. Värien lisääminen heikentää vaaleutta, koska värien lisäys nostaa valon absorptiota. Tämän takia on tärkeää lisätä väri mielellään siihen kerrokseen, jossa kellertävä massa on, joka on tyypillisesti kartongin keskikerros. Pintakerrokset ovat valkaistua sellua ja niillä on tärkeä merkitys kartongin vaaleudelle, joten värin lisäys pintaan alentaisi vielä merkittävämmin kartongin kokonaisvaaleutta. Pastan värjäyksellä saadaan tasaisuutta värjäykseen, mutta sävyn säätö on tehtävä edelleen massavärjäyksellä. Pigmenttivärien käytöllä pystytään lisäämään mm. valonkestoa kartongille. Kartongin ja paperituotteiden valonkeston tutkimiseen ei ole olemassa standardia. Työssä tutkittiin laboratorio-olosuhteissa ja huonevalossa vanhentuneiden kartonkinäytteiden vertailtavuutta. Materiaalivalinnoilla pystytään vaikuttamaan valon-kestoon. Siihen vaikuttavat mm. massan laatu, lateksivalinta sekä pigmenttivärin käyttö. Mekaanista massaa sisältävät tuotteet kellertyvät pääasiassa ligniinin takia. Ligniini sisältää paljon UV-säteilyyn reagoivia ryhmiä, jotka muuttuvat värilliseksi lisäten kellertymistä. Valkaistujen sellujen vanhentuminen on suhteessa mekaaniseen massaan erittäin vähäistä. SA-lateksin havaittiin suojaavan vaaleuden menetykseltä ja lisäävän sävyn pysyvyyttä paremmin kuin SB-lateksi.
Resumo:
The Differential Scanning Calorimetry (DSC) was used to study the thermal behavior of hair samples and to verify the possibility of identifying an individual based on DSC curves from a data bank. Hair samples of students and officials from Instituto de Química de Araraquara, UNESP were obtained to build up a data bank. Thus to sought an individual, under incognito participant of this data bank, was identified using DSC curves.
Resumo:
A simple, sensitive and selective spectrophotometric method for the assessment of carbofuran in various formulations and in environmental water samples is described. The method is based on the coupling of hydrolyzed carbofuran with diazotized dapsone in alkaline medium at 0 4° C which gives orange red colored product having the absorption maximum at 480 nm. The product is stable for 48 h. Beer's law is obeyed in the concentration range of 0.1 4.0 µg ml-1. The molar absorptivity and Sandell's Sensitivity are 5.0 x 10(4) L mol-1 cm-1 and 4.4 ng cm-2 respectively. The method is highly reproducible and is confirmed by RSD values (1.144 %). From the recovery studies it is found that this method is accurate and it can be successfully employed for the determination of carbofuran.
Resumo:
The objective of this thesis was to identify the effects of different factors on the tension and tension relaxation of wet paper web after high-speed straining. The study was motivated by the plausible connection between wet web mechanical properties and wet web runnability on paper machines shown by previous studies. The mechanical properties of wet paper were examined using a fast tensile test rig with a strain rate of 1000%/s. Most of the tests were carried out with laboratory handsheets, but samples from a pilot paper machine were also used. The tension relaxation of paper was evaluated as the tension remaining after 0.475 s of relaxation (residual tension). The tensile and relaxation properties of wet webs were found to be strongly dependent on the quality and amount of fines. With low fines content, the tensile strength and residual tension of wet paper was mainly determined by the mechanical interactions between fibres at their contact points. As the fines strengthen the mechanical interaction in the network, the fibre properties also become important. Fibre deformations caused by the mechanical treatment of pulp were shown to reduce the mechanical properties of both dry and wet paper. However, the effect was significantly higher for wet paper. An increase of filler content from 10% to 25% greatly reduced the tensile strength of dry paper, but did not significantly impair wet web tensile strength or residual tension. Increased filler content in wet web was shown to increase the dryness of the wet web after the press section, which partly compensates for the reduction of fibrous material in the web. It is also presumable that fillers increase entanglement friction between fibres, which is beneficial for wet web strength. Different contaminants present in white water during sheet formation resulted in lowered surface tension and increased dryness after wet pressing. The addition of different contaminants reduced the tensile strength of the dry paper. The reduction of dry paper tensile strength could not be explained by the reduced surface tension, but rather on the tendency of different contaminants to interfere with the inter-fibre bonding. Additionally, wet web strength was not affected by the changes in the surface tension of white water or possible changes in the hydrophilicity of fibres caused by the addition of different contaminants. The spraying of different polymers on wet paper before wet pressing had a significant effect on both dry and wet web tensile strength, whereas wet web elastic modulus and residual tension were basically not affected. We suggest that the increase of dry and wet paper strength could be affected by the molecular level interactions between these chemicals and fibres. The most significant increases in dry and wet paper strength were achieved with a dual application of anionic and cationic polymers. Furthermore, selectively adding papermaking chemicals to different fibre fractions (as opposed to adding chemicals to the whole pulp) improved the wet web mechanical properties and the drainage of the pulp suspension.
Resumo:
In this paper, a new, simple and sensitive method for arsenic determination in soil is proposed. This is based on the reduction of silver (I) and iron (III) ions by arsine followed by a complexation reaction of iron (II) with the spectrophotometric reagent Br-PADAP 2-(5-bromo-2-pyridylazo)-5-di-ethylaminophenol. Arsenic determination with a Sandell's sensitivity of 3.1 10-4 cm-2, linear range from 0.1 µg ml-1 to 2.0 µg ml-1 (r560 = 0.9995), molar absorptivity of 2.45 10(5) l mol-1 cm-1 and a concentration detection limit of 1.4 ng ml-1 (3s) were obtained using a 10 ml sample volume. Selectivity was increased with the use of EDTA as a masking agent. The proposed method was applied for arsenic determination in the presence of several ions amounts in digested soil samples. The results revealed that antimony (III), mercury (II), germanium (IV), platinum (IV) interferes at all analyzed proportions. The interferences can be easily removed by the use of EDTA. Precision and accuracy obtained were satisfactory with a R.S.D. < 5 %. Recovery of arsenic in soil samples varied from 95.55 to 102.70 % with a mean of 99.63 %. These results demonstrated that the proposed method is applicable for arsenic analysis in different soil samples.
Resumo:
A potentiometric titration method for the determination of minoxidil based on its redox reaction with K2Cr2O7 is described. The best results were observed using 1.00 x 10-3 mol L-1 K2Cr2O7 and 1.00 x 10-2 mol L-1 minoxidil solutions, and the minoxidil as titrant in 2.00 mol L-1 H2SO4 medium. The method was applied to commercial samples and compared with the results from a chromatographic procedure. Recoveries from 97.4 to 98.7 % were observed depending on the sample. Comparison with the chromatographic procedure reveled agreement within 90% confidence level.
Resumo:
The first objective of this study was to find out reliable laboratory methods to predict the effect of enzymes on specific energy consumption and fiber properties of TMP pulp. The second one was to find with interactive software called “Knowledge discovery in databases” enzymes or other additives that can be used in finding a solution to reduce energy consumption of TMP pulp. The chemical composition of wood and enzymes, which have activity on main wood components were presented in the literature part of the work. The results of previous research in energy reduction of TMP process with enzymes were also highlighted. The main principles of knowledge discovery have been included in literature part too. The experimental part of the work contains the methods description in which the standard size chip, crushed chip and fiberized spruce chip (fiberized pulp) were used. Different types of enzymatic treatment with different dosages and time were tested during the experiments and showed. Pectinase, endoglucanase and mixture of enzymes were used for evaluation of method reliability. The fines content and fiber length of pulp was measured and used as evidence of enzymes' effect. The refining method with “Bauer” laboratory disc refiner was evaluated as not highly reliable. It was not able to provide high repeatability of results, because of uncontrolled feeding capacity and refining consistency. The refining method with Valley refiner did not have a lot of variables and showed stable and repeatable results in energy saving. The results of experiments showed that efficient enzymes impregnation is probably the main target with enzymes application for energy saving. During the work the fiberized pulp showed high accessibility to enzymatic treatment and liquid penetration without special impregnating equipment. The reason was that fiberized pulp has larger wood surface area and thereby the contact area between the enzymatic solution and wood is also larger. Standard size chip and crushed chip treatment without special impregnator of enzymatic solution was evaluated as not efficient and did not show visible, repeatable results in energy consumption decrease. Thereby it was concluded that using of fiberized pulp and Valley refiner for measurements of enzymes' effectiveness in SEC decrease is more suitable than normal size chip and crushed chip with “Bauer” refiner. Endoglucanase with 5 kg/t dosage showed about 20% energy consumption decrease. Mixture of enzymes with 1.5 kg/t dosage showed about 15% decrease of energy consumption during the refining. Pectinase at different dosages and treatment times did not show significant effect on energy consumption. Results of knowledge discovery in databases showed the xylanase, cellulase and pectinase blend as most promising for energy reduction in TMP process. Surfactants were determined as effective additives for energy saving with enzymes.
Resumo:
There are several filtration applications in the pulp and paper industry where the capacity and cost-effectiveness of processes are of importance. Ultrafiltration is used to clean process water. Ultrafiltration is a membrane process that separates a certain component or compound from a liquid stream. The pressure difference across the membrane sieves macromolecules smaller than 0.001-0.02 μm through the membrane. When optimizing the filtration process capacity, online information about the conditions of the membrane is needed. Fouling and compaction of the membrane both affect the capacity of the filtration process. In fouling a “cake” layer starts to build on the surface of the membrane. This layer blocks the molecules from sieving through the membrane thereby decreasing the yield of the process. In compaction of the membrane the structure is flattened out because of the high pressure applied. The higher pressure increases the capacity but may damage the structure of the membrane permanently. Information about the compaction is needed to effectively operate the filters. The objective of this study was to develop an accurate system for online monitoring of the condition of the membrane using ultrasound reflectometry. Measurements of ultrafiltration membrane compaction were made successfully utilizing ultrasound. The results were confirmed by permeate flux decline, measurements of compaction with a micrometer, mechanical compaction using a hydraulic piston and a scanning electron microscope (SEM). The scientific contribution of this thesis is to introduce a secondary ultrasound transducer to determine the speed of sound in the fluid used. The speed of sound is highly dependent on the temperature and pressure used in the filters. When the exact speed of sound is obtained by the reference transducer, the effect of temperature and pressure is eliminated. This speed is then used to calculate the distances with a higher accuracy. As the accuracy or the resolution of the ultrasound measurement is increased, the method can be applied to a higher amount of applications especially for processes where fouling layers are thinner because of smaller macromolecules. With the help of the transducer, membrane compaction of 13 μm was measured in the pressure of 5 bars. The results were verified with the permeate flux decline, which indicated that compaction had taken place. The measurements of compaction with a micrometer showed compaction of 23–26 μm. The results are in the same range and confirm the compaction. Mechanical compaction measurements were made using a hydraulic piston, and the result was the same 13 μm as obtained by applying the ultrasound time domain reflectometry (UTDR). A scanning electron microscope (SEM) was used to study the structure of the samples before and after the compaction.
Resumo:
Fungi of the genus Fusarium cause a variety of difficult to control diseases in different crops, including winter cereals and maize. Among the species of this genus Fusarium graminearum deserves attention. The aim of this work was to develop a semi-selective medium to study this fungus. In several experiments, substrates for fungal growth were tested, including fungicides and antibiotics such as iprodiona, nystatin and triadimenol, and the antibacterial agents streptomycin and neomycin sulfate. Five seed samples of wheat, barley, oat, black beans and soybeans for F. graminearum detection by using the media Nash and Snyder agar (NSA), Segalin & Reis agar (SRA) and one-quarter dextrose agar (1/4PDA; potato 50g; dextrose 5g and agar 20g), either unsupplemented or supplemented with various concentrations of the antimicrobial agents cited above. The selected components and concentrations (g.L-1) of the proposed medium, Segalin & Reis agar (SRA-FG), were: iprodiona 0.05; nystatin 0,025; triadimenol 0.015; neomycin sulfate 0.05; and streptomycin sulfate, 0.3 added of ¼ potato sucrose agar. In the isolation from seeds of cited plant species, the sensitivity of this medium was similar to that of NSA but with de advantage of maintaining the colony morphological aspects similar to those observed in potato-dextrose-agar medium.