945 resultados para photoelectron spectroscopy
Resumo:
BACKGROUND: Blocked isocyanate-functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N-[2-methyl-4-(2-oxohexahydroazepine-1 -carboxamido)phenyl] carbamate-functionalized poly(ethylene octene) (POE-g-AMPC).RESULTS: New peaks at 2272 and 1720 cm(-1), corresponding to the stretching vibrations of NCO and the carbonyl of NH-CO-N, respectively, in AMPC, appeared in the infrared spectrum of POE-g-AMPC. Both rheological and X-ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE-g-AMPC blends. There was a marked increase in impact strength by about 10-fold over that of PBT/POE blends with the same rubber content and almost 30-fold higher than that of pure PBT when the POE-g-AMPC content was 25 wt%.
Resumo:
Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.
Resumo:
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 mu A mM(-1) cm(-2) was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 mu M and a response time of 3 s, respectively.
Resumo:
In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.
Resumo:
We report here a facile method to obtain folic acid (FA)-protected gold nanoparticles (Au NPs) by heating an aqueous solution of HAuCl4/FA in which FA acts as both the reducing and stabilizing agent. The successful formation of FA-protected Au NPs is demonstrated by UV/Vis spectroscopy, transmission electron microscopy (TEM), selected-area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). ne intracellular uptake of these nanoparticles is facilitated by HeLa cells overexpressing the folate reporter, which itself is significantly inhibited by free FA in a competitive assay as quantified by inductively coupled plasma mass spectroscopy (ICP-MS). This simple one-step approach affords a new perspective for creating functional nanomaterials, and the resulting biocompatible, functional Au NPs may find some prospective applications in various biomedical fields.
Resumo:
Counterions present at the surface of polyelectrolyte multilayers (PEMs) were utilized for modulation of surface wettability via ion exchange. The PEM film was dipped in aqueous solutions of different anions, respectively, and the water contact angle of the surface varied from about 10 degrees to 120 degrees, depending on the hydration characteristics of the anion. The ion exchange mechanism was verified by X-ray photoelectron spectroscopy. The process was rapid and reversible. Ionic strength of the polyelectrolyte solution used for preparing the PEMs was found to be crucial to the surface wetting properties and the reversibility and kinetics of the process, and the effects were correlated to the surface density of the excess charge and counterion. This work provides a general, facile and rapid approach of surface property modulation.
Resumo:
A high-efficiency nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au-Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are employed to characterize the obtained Au-Pt/SiO2. It was found that each hybrid nanosphere is composed of high-density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the AuPt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.
Resumo:
A high-efficiency and low-cost spongelike Au/Pt core/shell electrocatalyst with hollow cavity has been facilely obtained via a simple two-step wet chemical process. Hollow gold nanospheres were first synthesized via a modified galvanic replacement reaction between Co nanoparticles in situ produced and HAUCl(4). The as-prepared gold hollow spheres were employed as seeds to further grow spongelike Pt shell. It is found that the surface of this hybrid nanomaterial owns many Pt nanospikes, which form a spongelike nanostructure. All experimental data including scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-near-infrared spectroscopy have been employed to characterize the obtained Au/Pt hybrid nanomaterial. The rapid development of fuel cell has inspired us to investigate the electrocatalytic properties for dioxygen and methanol of this novel hybrid nanomaterial. Spongelike hybrid nanomaterial mentioned here exhibits much higher catalytic activity for dioxygen reduction and methanol oxidation than the common Pt electrode.
Resumo:
Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.
Resumo:
Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).
Resumo:
A series of oxide ion conductors Ce6-xGdxMoO15-delta (0.0 <= x <= 1.8) have been prepared by the sol-gel method. Their properties were characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Raman, IR, X-ray photoelectron spectroscopy (XPS), and AC impedance spectroscopy. The XRD patterns showed that the materials were single phase with a cubic fluorite structure. The conductivity of Ce6-xGdxMoO15-delta increases as x increases and reaches the maximum at x = 0.15. The conductivity of Ce4.5Gd1.5MoO15-delta is sigma(t) = 3.6 x 10(-3) S/cm at 700 degrees C, which is higher than that of Ce4.5/6Gd1.5/6O2-delta (sigma(t) = 2.6 x 10(-3) S/cm), and the corresponding activation energy of Ce4.5Gd1.5MoO15-delta (0.92 eV) is lower than that of Ce4.5/6Gd1.5/6O2-delta (1.18 eV).
Resumo:
Ce6-xHoxMoO15-delta(0.0 <= x <= 1.2) was synthesized by modified sol-gel method and characterized by differential X-ray diffraction(XRD), Raman, and X-ray photoelectron spectroscopy(XPS) methods. The oxide ionic conductivity of the samples was investigated by AC impedance spectroscopy. It shows that all the samples are single phase with a cubic fluorite structure. The solid solution Ce6-xHoxMoO15-delta(x=0.6) was detected to be the best conducting phase with the highest conductivity(sigma(t)=1.05x10(-2) S/cm) at 800 degrees C and the lowest activation energy(E-a=1.09 eV). These properties suggest that this kind of material has a potential application in intermediate-low temperature solid oxide fuel cells.
Resumo:
Here, we first report a facile one-step one-phase synthetic route to achieve size-controlled gold micro/nanoparticles with narrow size distribution by using o-diaminobenzene as a reducing agent in the presence of poly(N-vinyl-2-pyrrolidone) via a simple wet-chemical approach. All experimental data including that from scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques indicates that the gold micro/nanoparticles with a narrow size distribution were produced in high yield (similar to 100%).
Resumo:
We describe herein the preparation of silver nanoparticles (AgNPs) using nucleobase adenine as protecting agent through the in situ chemical reduction of AgNO3 with NaBH4 in an aqueous medium at room temperature. As-prepared AgNPs were characterized by UV-visible spectra, transmission electron microscopy and x-ray photoelectron spectroscopy. All these data confirmed the formation of AgNPs. On the basis of electrostatic interactions between as-prepared AgNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AgNP)n (n = 0-9) multilayers on a 3-mercaptopropyltrimethoxysilane/AgNP functionalized indium tin oxide (ITO) substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-visible spectra. Furthermore, these ITO substrates coated with multilayers of different thickness were investigated as surface-enhanced Raman scattering (SERS)-active substrates using p-aminothiophenol as a probe molecule, implying that these multilayers substrates may be promising for a new type of SERS-active substrate.
Resumo:
Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.