916 resultados para modeling and prediction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early identification of beginning readers at risk of developing reading and writing difficulties plays an important role in the prevention and provision of appropriate intervention. In Tanzania, as in other countries, there are children in schools who are at risk of developing reading and writing difficulties. Many of these children complete school without being identified and without proper and relevant support. The main language in Tanzania is Kiswahili, a transparent language. Contextually relevant, reliable and valid instruments of identification are needed in Tanzanian schools. This study aimed at the construction and validation of a group-based screening instrument in the Kiswahili language for identifying beginning readers at risk of reading and writing difficulties. In studying the function of the test there was special interest in analyzing the explanatory power of certain contextual factors related to the home and school. Halfway through grade one, 337 children from four purposively selected primary schools in Morogoro municipality were screened with a group test consisting of 7 subscales measuring phonological awareness, word and letter knowledge and spelling. A questionnaire about background factors and the home and school environments related to literacy was also used. The schools were chosen based on performance status (i.e. high, good, average and low performing schools) in order to include variation. For validation, 64 children were chosen from the original sample to take an individual test measuring nonsense word reading, word reading, actual text reading, one-minute reading and writing. School marks from grade one and a follow-up test half way through grade two were also used for validation. The correlations between the results from the group test and the three measures used for validation were very high (.83-.95). Content validity of the group test was established by using items drawn from authorized text books for reading in grade one. Construct validity was analyzed through item analysis and principal component analysis. The difficulty level of most items in both the group test and the follow-up test was good. The items also discriminated well. Principal component analysis revealed one powerful latent dimension (initial literacy factor), accounting for 93% of the variance. This implies that it could be possible to use any set of the subtests of the group test for screening and prediction. The K-Means cluster analysis revealed four clusters: at-risk children, strugglers, readers and good readers. The main concern in this study was with the groups of at-risk children (24%) and strugglers (22%), who need the most assistance. The predictive validity of the group test was analyzed by correlating the measures from the two school years and by cross tabulating grade one and grade two clusters. All the correlations were positive and very high, and 94% of the at-risk children in grade two were already identified in the group test in grade one. The explanatory power of some of the home and school factors was very strong. The number of books at home accounted for 38% of the variance in reading and writing ability measured by the group test. Parents´ reading ability and the support children received at home for schoolwork were also influential factors. Among the studied school factors school attendance had the strongest explanatory power, accounting for 21% of the variance in reading and writing ability. Having been in nursery school was also of importance. Based on the findings in the study a short version of the group test was created. It is suggested for use in the screening processes in grade one aiming at identifying children at risk of reading and writing difficulties in the Tanzanian context. Suggestions for further research as well as for actions for improving the literacy skills of Tanzanian children are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Atherosclerosis begins in early life progressing from asymptomatic to symptomatic as we age. Although substantial progress has been made in identifying the determinants of atherosclerosis in middle to older age adults at increased cardiovascular risk, there is lack of data examining determinants and prediction of atherosclerosis in young adults. Aims: The current study was designed to investigate levels of cardiovascular risk factors in young adults, subclinical measures of atherosclerosis, and prediction of subclinical arterial changes with conventional risk factor measures and novel metabolic profiling of serum samples. Subjects and Methods: This thesis utilised data from the follow-ups performed in 2001 and 2007 in the Cardiovascular Risk in Young Finns study, a Finnish population-based prospective cohort study that examined 2,204 subjects who were aged 30-45 years in 2007. Subclinical atherosclerosis was studied using noninvasive ultrasound measurements of carotid intima-media thickness (IMT), carotid arterial distensibility (CDist) and brachial flow-mediated dilation (FMD). Measurements included conventional risk factors and metabolic profiling using highthroughput nuclear magnetic resonance (NMR) methods that provided data on 42 lipid markers and 16 circulating metabolites. Results: Trends in lipids were favourable between 2001 and 2007, whereas waist circumference, fasting glucose, and blood pressure levels increased. To study the stability of noninvasive ultrasound markers, 6-year tracking (the likelihood to maintain the original fractile over time) in 6 years was examined. IMT tracked more strongly than CDist and FMD. Cardiovascular risk scores (Framingham, SCORE, Finrisk, Reynolds and PROCAM) predicted subclinical atherosclerosis equally. Lipoprotein subclass testing did not improve the prediction of subclinical atherosclerosis over and above conventional risk factors. However, circulating metabolites improved risk stratification. Tyrosine and docosahexaenoic acid were found to be novel biomarkers of high IMT. Conclusions: Prediction of cardiovascular risk in young Finnish adults can be performed with any of the existing risk scores. The addition of metabonomics to risk stratification improves prediction of subclinical changes and enables more accurate targeting of prevention at an early stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The focus of this dissertation is the motivational influences on transfer in higher education and professional training contexts. To estimate these motivational influences, the dissertation includes seven individual studies that are structured in two parts. Part I, Dimensions, aims at identifying the dimensionality of motivation to transfer and its structural relations with training-related antecedents and outcomes. Part II, Boundary Conditions, aims at testing the predictive validity of motivation theories used in contemporary training research under different study conditions. Data in this dissertation was gathered from multi-item questionnaires, which were analyzed differently in Part I and Part II. Studies in Part I employed exploratory and confirmatory factor analysis, structural equation modeling, partial least squares (PLS) path modeling, and mediation analysis. Studies in Part II used artifact distribution meta-analysis, (nested) subgroup analysis, and weighted least squares (WLS) multiple regression. Results demonstrate that motivation to transfer can be conceptualized as a three-dimensional construct, including autonomous motivation to transfer, controlled motivation to transfer, and intention to transfer, given a theoretical framework informed by expectancy theory, self-determination theory, and the theory of planned behavior. Results also demonstrate that a range of boundary conditions moderates motivational influences on transfer. To test the predictive validity of expectancy theory, social cognitive theory, and the theory of goal orientations under different study settings, a total of 17 boundary conditions were meta-analyzed, including age; assessment criterion; assessment source; attendance policy; collaboration among trainees; computer support; instruction; instrument used to measure motivation; level of education; publication type; social training context; SS/SMC bias; study setting; survey modality; type of knowledge being trained; use of a control group; and work context. Together, the findings cumulated in this thesis support the basic premise that motivation is centrally important for transfer, but that motivational influences need to be understood from a more differentiated perspective than commonly found in the literature, in order to account for several dimensions and boundary conditions. The results of this dissertation across the seven individual studies are reflected in terms of their implications for theory development and their significance for training evaluation and the design of training environments. Limitations and directions to take in future research are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates futures market efficiency and optimal hedge ratio estimation. First, cointegration between spot and futures prices is studied using Johansen method, with two different model specifications. If prices are found cointegrated, restrictions on cointegrating vector and adjustment coefficients are imposed, to account for unbiasedness, weak exogeneity and prediction hypothesis. Second, optimal hedge ratios are estimated using static OLS, and time-varying DVEC and CCC models. In-sample and out-of-sample results for one, two and five period ahead are reported. The futures used in thesis are RTS index, EUR/RUB exchange rate and Brent oil, traded in Futures and options on RTS.(FORTS) For in-sample period, data points were acquired from start of trading of each futures contract, RTS index from August 2005, EUR/RUB exchange rate March 2009 and Brent oil October 2008, lasting till end of May 2011. Out-of-sample period covers start of June 2011, till end of December 2011. Our results indicate that all three asset pairs, spot and futures, are cointegrated. We found RTS index futures to be unbiased predictor of spot price, mixed evidence for exchange rate, and for Brent oil futures unbiasedness was not supported. Weak exogeneity results for all pairs indicated spot price to lead in price discovery process. Prediction hypothesis, unbiasedness and weak exogeneity of futures, was rejected for all asset pairs. Variance reduction results varied between assets, in-sample in range of 40-85 percent and out-of sample in range of 40-96 percent. Differences between models were found small, except for Brent oil in which OLS clearly dominated. Out-of-sample results indicated exceptionally high variance reduction for RTS index, approximately 95 percent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Formal software development processes and well-defined development methodologies are nowadays seen as the definite way to produce high-quality software within time-limits and budgets. The variety of such high-level methodologies is huge ranging from rigorous process frameworks like CMMI and RUP to more lightweight agile methodologies. The need for managing this variety and the fact that practically every software development organization has its own unique set of development processes and methods have created a profession of software process engineers. Different kinds of informal and formal software process modeling languages are essential tools for process engineers. These are used to define processes in a way which allows easy management of processes, for example process dissemination, process tailoring and process enactment. The process modeling languages are usually used as a tool for process engineering where the main focus is on the processes themselves. This dissertation has a different emphasis. The dissertation analyses modern software development process modeling from the software developers’ point of view. The goal of the dissertation is to investigate whether the software process modeling and the software process models aid software developers in their day-to-day work and what are the main mechanisms for this. The focus of the work is on the Software Process Engineering Metamodel (SPEM) framework which is currently one of the most influential process modeling notations in software engineering. The research theme is elaborated through six scientific articles which represent the dissertation research done with process modeling during an approximately five year period. The research follows the classical engineering research discipline where the current situation is analyzed, a potentially better solution is developed and finally its implications are analyzed. The research applies a variety of different research techniques ranging from literature surveys to qualitative studies done amongst software practitioners. The key finding of the dissertation is that software process modeling notations and techniques are usually developed in process engineering terms. As a consequence the connection between the process models and actual development work is loose. In addition, the modeling standards like SPEM are partially incomplete when it comes to pragmatic process modeling needs, like light-weight modeling and combining pre-defined process components. This leads to a situation, where the full potential of process modeling techniques for aiding the daily development activities can not be achieved. Despite these difficulties the dissertation shows that it is possible to use modeling standards like SPEM to aid software developers in their work. The dissertation presents a light-weight modeling technique, which software development teams can use to quickly analyze their work practices in a more objective manner. The dissertation also shows how process modeling can be used to more easily compare different software development situations and to analyze their differences in a systematic way. Models also help to share this knowledge with others. A qualitative study done amongst Finnish software practitioners verifies the conclusions of other studies in the dissertation. Although processes and development methodologies are seen as an essential part of software development, the process modeling techniques are rarely used during the daily development work. However, the potential of these techniques intrigues the practitioners. As a conclusion the dissertation shows that process modeling techniques, most commonly used as tools for process engineers, can also be used as tools for organizing the daily software development work. This work presents theoretical solutions for bringing the process modeling closer to the ground-level software development activities. These theories are proven feasible by presenting several case studies where the modeling techniques are used e.g. to find differences in the work methods of the members of a software team and to share the process knowledge to a wider audience.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutation in the MYO5A (GS1, Elejalde), RAB27A (GS2) or MLPH (GS3) genes. Typical features of all three subtypes of this disease include pigmentary dilution of the hair and skin and silvery-gray hair. Whereas the GS3 phenotype is restricted to the pigmentation dysfunction, GS1 patients also show primary neurological impairment and GS2 patients have severe immunological deficiencies that lead to recurrent infections and hemophagocytic syndrome. We report here the diagnosis of GS2 in 3-year-old twin siblings, with silvery-gray hair, immunodeficiency, hepatosplenomegaly and secondary severe neurological symptoms that culminated in multiple organ failure and death. Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. A homozygous nonsense mutation, C-T transition (c.550C>T), in the coding region of the RAB27A gene, which leads to a premature stop codon and prediction of a truncated protein (R184X), was found. In patient mononuclear cells, RAB27A mRNA levels were the same as in cells from the parents, but no protein was detected. In addition to the case report, we also present an updated summary on the exon/intron organization of the human RAB27A gene, a literature review of GS2 cases, and a complete list of the human mutations currently reported in this gene. Finally, we propose a flow chart to guide the early diagnosis of the GS subtypes and Chédiak-Higashi syndrome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are events caused by the massive proliferation of microscopic, often photosynthetic organisms that inhabit both fresh and marine waters. Although HABs are essentially a natural phenomenon, they now cause worldwide concern. Recent anthropogenic effects, such as climate change and eutrophication via nutrient runoff, can be seen in their increased prevalence and severity. Cyanobacteria and dinoflagellates are often the causative organisms of HABs. In addition to adverse effects caused by the sheer biomass, certain species produce highly potent toxic compounds: hepatotoxic microcystins are produced exclusively by cyanobacteria and neurotoxic saxitoxins, also known as paralytic shellfish toxins (PSTs), by both cyanobacteria and dinoflagellates. Specific biosynthetic genes in the cyanobacterial genomes direct the production of microcystin and paralytic shellfish toxins. Recently also the first paralytic shellfish toxin gene sequences from dinoflagellate genomes have been elucidated. The public health risks presented by HABs are evident, but the monitoring and prediction of toxic events is challenging. Characterization of the genetic background of toxin biosynthesis, including that of microcystins and paralytic shellfish toxins, has made it possible to develop highly sensitive molecular tools which have shown promise in the monitoring and study of potentially toxic microalgae. In this doctoral work, toxin-specific genes were targeted in the developed PCR and qPCR assays for the detection and quantification of potentially toxic cyanobacteria and dinoflagellates in the environment. The correlation between the copy numbers of the toxin biosynthesis genes and toxin production were investigated to assess whether the developed methods could be used to predict toxin concentrations. The nature of the correlation between gene copy numbers and amount of toxin produced varied depending on the targeted gene and the producing organism. The combined mcyB copy numbers of three potentially microcystin-producing cyanobacterial genera showed significant positive correlation to the observed total toxin production. However, the presence of PST-specific sxtA, sxtG, and sxtB genes of cyanobacterial origin was found to be a poor predictor of toxin production in the studied area. Conversely, the dinoflagellate sxtA4 was a good qualitative indicator of a neurotoxic bloom both in the laboratory and in the field, and population densities reflected well the observed toxin concentrations. In conclusion, although the specificity of each potential targeted toxin biosynthesis gene must be assessed individually during method development, the results obtained in this doctoral study support the use of quantitative PCR -based approaches in the monitoring of toxic cyanobacteria and dinoflagellates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The computational study, and in particular the density functional theory (DFT) study of the organocatalytic α-chlorination-aldol reaction and the chiral backbone Frustrated Lewis Pair (FLP) system served as a valuable tool for experimental purposes. This thesis describes methods to consider different transition states of the proline- catalyzed α-chlorination aldol reaction to determine the reasonable transition state in the reaction between the enamine and α-chloro aldehydes. Moreover, the novel intramolecular Frustrated Lewis pair based on a chiral backbone for the asymmetric hydrogenation of imines and enamines was designed and the ability of hydrogen splitting by this new FLP system was examined by computational modeling and calculating the hydrogen activation energy barrier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Un objectif principal du génie logiciel est de pouvoir produire des logiciels complexes, de grande taille et fiables en un temps raisonnable. La technologie orientée objet (OO) a fourni de bons concepts et des techniques de modélisation et de programmation qui ont permis de développer des applications complexes tant dans le monde académique que dans le monde industriel. Cette expérience a cependant permis de découvrir les faiblesses du paradigme objet (par exemples, la dispersion de code et le problème de traçabilité). La programmation orientée aspect (OA) apporte une solution simple aux limitations de la programmation OO, telle que le problème des préoccupations transversales. Ces préoccupations transversales se traduisent par la dispersion du même code dans plusieurs modules du système ou l’emmêlement de plusieurs morceaux de code dans un même module. Cette nouvelle méthode de programmer permet d’implémenter chaque problématique indépendamment des autres, puis de les assembler selon des règles bien définies. La programmation OA promet donc une meilleure productivité, une meilleure réutilisation du code et une meilleure adaptation du code aux changements. Très vite, cette nouvelle façon de faire s’est vue s’étendre sur tout le processus de développement de logiciel en ayant pour but de préserver la modularité et la traçabilité, qui sont deux propriétés importantes des logiciels de bonne qualité. Cependant, la technologie OA présente de nombreux défis. Le raisonnement, la spécification, et la vérification des programmes OA présentent des difficultés d’autant plus que ces programmes évoluent dans le temps. Par conséquent, le raisonnement modulaire de ces programmes est requis sinon ils nécessiteraient d’être réexaminés au complet chaque fois qu’un composant est changé ou ajouté. Il est cependant bien connu dans la littérature que le raisonnement modulaire sur les programmes OA est difficile vu que les aspects appliqués changent souvent le comportement de leurs composantes de base [47]. Ces mêmes difficultés sont présentes au niveau des phases de spécification et de vérification du processus de développement des logiciels. Au meilleur de nos connaissances, la spécification modulaire et la vérification modulaire sont faiblement couvertes et constituent un champ de recherche très intéressant. De même, les interactions entre aspects est un sérieux problème dans la communauté des aspects. Pour faire face à ces problèmes, nous avons choisi d’utiliser la théorie des catégories et les techniques des spécifications algébriques. Pour apporter une solution aux problèmes ci-dessus cités, nous avons utilisé les travaux de Wiels [110] et d’autres contributions telles que celles décrites dans le livre [25]. Nous supposons que le système en développement est déjà décomposé en aspects et classes. La première contribution de notre thèse est l’extension des techniques des spécifications algébriques à la notion d’aspect. Deuxièmement, nous avons défini une logique, LA , qui est utilisée dans le corps des spécifications pour décrire le comportement de ces composantes. La troisième contribution consiste en la définition de l’opérateur de tissage qui correspond à la relation d’interconnexion entre les modules d’aspect et les modules de classe. La quatrième contribution concerne le développement d’un mécanisme de prévention qui permet de prévenir les interactions indésirables dans les systèmes orientés aspect.