977 resultados para membrane processes
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2015
Resumo:
Ucides cordatus (Linnaeus, 1763) is a hypo-hyper-regulating mangrove crab possessing gills for respiratory and osmoregulatory processes, separated in anterior and posterior sections. They also have hepatopancreas, which is responsible for digestion and absorption of nutrients and detoxification of toxic metals. Each of these organs has specific cells that are important for in vitro studies in cell biology, ion and toxic metals transport. In order to study and characterize cells from gills and hepatopancreas, both were separated using a Sucrose Gradient (SG) from 10 to 40% and cells in each gradient were characterized using the vital mitochondrial dye DASPEI (2-(4-dimethylaminostyryl)-N- ethylpyridinium iodide) and Trichrome Mallory's stain. Both in 20 and 40% SG for gill cells and 30% SG for hepatopancreatic cells, a greater number of cells were colored with DASPEI, indicating a larger number of mitochondria in these cells. It is concluded that the gill cells present in 20% and 40% SG are Thin cells, responsible for respiratory processes and Ionocytes responsible for ion transport, respectively. For hepatopancreatic cells, the 30% SG is composed of Fibrillar cells that possess larger number of membrane ion and nutrient transporters. Moreover, the transport of toxic metal cadmium (Cd) by isolated hepatopancreatic cells was performed as a way of following cell physiological integrity after cell separation and to study differences in transport among the cells. All hepatopancreatic cells were able to transport Cd. These findings are the first step for further work on isolated cells of these important exchange epithelia of crabs, using a simple separation method and to further develop successful in vitro cell culture in crabs.
Resumo:
We address the question of how a third-party payer (e.g. an insurer) decides what providers to contract with. Three different mechanisms are studied and their properties compared. A first mechanism consists in the third-party payer setting up a bargaining procedure with both providers jointly and simultaneously. A second mechanism envisages the outcome of the same simultaneous bargaining but independently with every provider. Finally, the last mechanism is of different nature. It is the so-called "any willing provider" where the third-party payer announces a contract and every provider freely decides to sign it or not. The main finding is that the decision of the third-party payer depends on the surplus to be shared. When it is relatively high the third-party payer prefers the any willing provider system. When, on the contrary, the surplus is relatively low, the third-party payer will select one of the other two systems accor ing to how bargaining power is distributed.
Resumo:
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.