868 resultados para kernel estimators
Resumo:
The kernel of the cutia nut (castanha-de-cutia, Couepia edulis (Prance) Prance) of the western Amazon, which is consumed by the local population, has traditionally been extracted from the nut with a machete, a dangerous procedure that only produces kernels cut in half. A shelling off machine prototype, which produces whole kernels without serious risks to its operator, is described and tested. The machine makes a circular cut in the central part of the fruit shell, perpendicular to its main axis. Three ways of conditioning the fruits before cutting were compared: (1) control; (2) oven drying immediately prior to cutting; (3) oven drying, followed by a 24-hour interval before cutting. The time needed to extract and separate the kernel from the endocarp and testa was measured. Treatment 3 produced the highest output: 63 kernels per hour, the highest percentage of whole kernels (90%), and the best kernel taste. Kernel extraction with treatment 3 required 50% less time than treatment 1, while treatment 2 needed 38% less time than treatment 1. The proportion of kernels attached to the testa was 93%, 47%, and 8% for treatments 1, 2, and 3, respectively, and was the main reason for extraction time differences.
Resumo:
In this work, we present an integral scheduling system for non-dedicated clusters, termed CISNE-P, which ensures the performance required by the local applications, while simultaneously allocating cluster resources to parallel jobs. Our approach solves the problem efficiently by using a social contract technique. This kind of technique is based on reserving computational resources, preserving a predetermined response time to local users. CISNE-P is a middleware which includes both a previously developed space-sharing job scheduler and a dynamic coscheduling system, a time sharing scheduling component. The experimentation performed in a Linux cluster shows that these two scheduler components are complementary and a good coordination improves global performance significantly. We also compare two different CISNE-P implementations: one developed inside the kernel, and the other entirely implemented in the user space.
Resumo:
Given an elliptic curve E and a finite subgroup G, V ́lu’s formulae concern to a separable isogeny IG : E → E ′ with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P + G as the difference between the abscissa of IG (P ) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstraß coefficients of E ′ as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P +G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.
Resumo:
Nykyään kolmeen kerrokseen perustuvat client-server –sovellukset ovat suuri kinnostuskohde sekä niiden kehittäjille etta käyttäjille. Tietotekniikan nopean kehityksen ansiosta näillä sovelluksilla on monipuolinen käyttö teollisuuden eri alueilla. Tällä hetkellä on olemassa paljon työkaluja client-server –sovellusten kehittämiseen, jotka myös tyydyttävät asiakkaiden asettamia vaatimuksia. Nämä työkalut eivät kuitenkaan mahdollista joustavaa toimintaa graafisen käyttöliittyman kanssa. Tämä diplomityö käsittelee client-server –sovellusten kehittamistä XML –kielen avulla. Tämä lähestymistapa mahdollistaa client-server –sovellusten rakentamista niin, että niiden graafinen käyttöliittymä ja ulkonäkö olisivat helposti muokattavissa ilman ohjelman ytimen uudelleenkääntämistä. Diplomityö koostuu kahdesta ostasta: teoreettisesta ja käytännöllisestä. Teoreettinen osa antaa yleisen tiedon client-server –arkkitehtuurista ja kuvailee ohjelmistotekniikan pääkohdat. Käytannöllinen osa esittää tulokset, client-server –sovellusten kehittämisteknologian kehittämislähestymistavan XML: ää käyttäen ja tuloksiin johtavat usecase– ja sekvenssidiagrammit. Käytännöllinen osa myos sisältää esimerkit toteutetuista XML-struktuureista, jotka kuvaavat client –sovellusten kuvaruutukaavakkeiden esintymisen ja serverikyselykaaviot.
Resumo:
VDSL on teknologia, joka mahdollistaa nopeat Internet-yhteydet tavallista puhelinlinjaa käyttäen. Tätä varten käyttäjä tarvitsee VDSL-modeemin ja Internet-operaattori reitittimen, johon VDSL-linjat kytketään. Reitittimen on oltava suorituskykyinen, jotta kaikki VDSL-liikenne voidaan reittittää eteenpäin. Tehokkuutta haetaan tekemällä suuri osa reitityksestä erityisillä reititinpiireillä. Tässä diplomityössä käsitellään reititinpiirien teoriaa ja niiden hallintaa. Lisäksi vertailtiin kolmen suuren valmistajan tuotteita. Tuotteiden tarjoamat ominaisuudet vaikuttivat hyvin yhteneväisiltä. Ominaisuuksien hallinta ja toteutus olivat erilaisia. Työn tavoitteena oli löytää ohjelmistoarkkitehtuuri piirien ohjaamiseen niin, että Linux-käyttöjärjestelmän ytimen palveluja voitaisiin käyttää mahdollisimman hyödyllisesti. Työssä havaittiin, että ohjelmistoarkkitehtuurin voi määritellä monella eri tavalla riippuen siitä, miten piiri on kytketty prosessoriin, mitä piirin ominaisuuksia halutaan käyttää ja miten arkkitehtuuria halutaan jatkossa laajentaa.
Resumo:
Työn tavoitteena on luoda yleinen informaatioinfrastruktuuri autoteollisuuden valmistuskustannusten arviointiin. Nykyään tämä kustannusarviointi on laajassa käytössä oleva menetelmä. Se mahdollistaa tuotekustannusten hallitsemisen, mikä lisää autovalmistajien kilpailukykyä. Kustannusarvioinnissa tarvitaan laadukasta tietoa, mutta suoritetussa tutkimuksessa paljastui, että useat seikat haittaavat tätä arviointia. Erityisesti resurssien vähyys, tiedonhankinta ja tiedon luotettavuuden varmentaminen aiheuttavat ongelmia. Nämä seikat ovat johtaneet kokemusperäisen asiantuntemuksen laajaan käyttöön, minkä johdosta erityisesti kokemattomilla kustannusarvioijilla on vaikeuksia ymmärtää kustannusarvioiden tietovaatimuksia. Tämän johdosta tutkimus tuo esiin kokeneiden kustannusarvioijien käyttämiä tietoja ja tietolähteitä päämääränä lisätä kustannusarvioiden ymmärtämistä. Informaatioinfrastruktuuri, joka sisältää tarvittavan tiedon järkevien ja luotettavien kustannusarvioiden luontiin, perustuu tutkimuksen tuloksiin. Infrastruktuuri määrittelee tarvittavan kustannustiedon ja niiden mahdolliset tietolähteet. Lisäksi se selvittää miksi tieto on tarpeellista ja miten tiedon oikeellisuus pitäisi varmentaa. Infrastruktuuria käytetään yhdessä yleisen kustannusarvioprosessimallin kanssa. Tämä integrointi johtaa tarkempiin ja selkeämpiin kustannusarvioihin autoteollisuudessa.
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.
Resumo:
The variability observed in drug exposure has a direct impact on the overall response to drug. The largest part of variability between dose and drug response resides in the pharmacokinetic phase, i.e. in the dose-concentration relationship. Among possibilities offered to clinicians, Therapeutic Drug Monitoring (TDM; Monitoring of drug concentration measurements) is one of the useful tool to guide pharmacotherapy. TDM aims at optimizing treatments by individualizing dosage regimens based on blood drug concentration measurement. Bayesian calculations, relying on population pharmacokinetic approach, currently represent the gold standard TDM strategy. However, it requires expertise and computational assistance, thus limiting its large implementation in routine patient care. The overall objective of this thesis was to implement robust tools to provide Bayesian TDM to clinician in modern routine patient care. To that endeavour, aims were (i) to elaborate an efficient and ergonomic computer tool for Bayesian TDM: EzeCHieL (ii) to provide algorithms for drug concentration Bayesian forecasting and software validation, relying on population pharmacokinetics (iii) to address some relevant issues encountered in clinical practice with a focus on neonates and drug adherence. First, the current stage of the existing software was reviewed and allows establishing specifications for the development of EzeCHieL. Then, in close collaboration with software engineers a fully integrated software, EzeCHieL, has been elaborated. EzeCHieL provides population-based predictions and Bayesian forecasting and an easy-to-use interface. It enables to assess the expectedness of an observed concentration in a patient compared to the whole population (via percentiles), to assess the suitability of the predicted concentration relative to the targeted concentration and to provide dosing adjustment. It allows thus a priori and a posteriori Bayesian drug dosing individualization. Implementation of Bayesian methods requires drug disposition characterisation and variability quantification trough population approach. Population pharmacokinetic analyses have been performed and Bayesian estimators have been provided for candidate drugs in population of interest: anti-infectious drugs administered to neonates (gentamicin and imipenem). Developed models were implemented in EzeCHieL and also served as validation tool in comparing EzeCHieL concentration predictions against predictions from the reference software (NONMEM®). Models used need to be adequate and reliable. For instance, extrapolation is not possible from adults or children to neonates. Therefore, this work proposes models for neonates based on the developmental pharmacokinetics concept. Patients' adherence is also an important concern for drug models development and for a successful outcome of the pharmacotherapy. A last study attempts to assess impact of routine patient adherence measurement on models definition and TDM interpretation. In conclusion, our results offer solutions to assist clinicians in interpreting blood drug concentrations and to improve the appropriateness of drug dosing in routine clinical practice.
Resumo:
Työn tarkoituksena on tutkia pinon ylikirjoitukseen perustuvien hyökkäysten toimintaa ja osoittaa kokeellisesti nykyisten suojaustekniikoiden olevan riittämättömiä. Tutkimus suoritetaan testaamalla miten valitut tietoturvatuotteet toimivat eri testitilanteissa. Testatut tuotteet ovat Openwall, PaX, Libsafe 2.0 ja Immunix 6.2. Testaus suoritetaan pääasiassa RedHat 7.0 ympäristössä testiohjelman avulla. Testeissä mitataan sekä tuotteiden kyky havaita hyökkäyksiä että niiden nopeusvaikutukset. Myös erityyppisten hyökkäysten ja niitä vastaan kehitettyjen metodien toimintaperiaatteet esitellään seikkaperäisesti ja havainnollistetaan yksinkertaistetuilla esimerkeillä. Esitellyt tekniikat sisältävät puskurin ylivuodot, laittomat muotoiluparametrit, loppumerkittömät merkkijonot ja taulukoiden ylivuodot. Testit osoittavat, etteivät valitut tuotteet estä kaikkia hyökkäyksiä, joten lopuksi perehdytään myös vahinkojen minimointiin onnistuneiden hyökkäysten varalta.
Resumo:
Reaaliaikaisten käyttöjärjestelmien käyttö sulautetuissa järjestelmissä on kasvamassa koko ajan. Sulautettuja tietokoneita käytetään yhä useammassa kohteessa kuten sähkökäyttöjen ohjauksessa. Sähkökäyttöjen ohjaus hoidetaan nykyisin yleensä nopealla digitaalisella signaaliprosessorilla (DSP), jolloin ohjelmointi ja päivittäminen on hidasta ja vaikeaa johtuen käytettävästä matalan tason Assembler-kielestä. Ratkaisuna yleiskäyttöisten prosessorien ja reaaliaikakäyttöjärjestelmien käyttö. Kaupalliset reaaliaikakäyttöjärjestelmät ovat kalliita ja lähdekoodin saaminen omaan käyttöön jopa mahdotonta. Linux on ei-kaupallinen avoimen lähdekoodin käyttöjärjestelmä, joten sen käyttö on ilmaista ja sitä voi muokata vapaasti. Linux:iin on saatavana useita laajennuksia, jotka tekevät siitä reaaliaikaisen käyttöjärjestelmän. Vaihtoehtoina joko kova (hard) tai pehmeä (soft) reaaliaikaisuus. Linux:iin on olemassa valmiita kehitysympäristöjä mutta ne kaipaavat parannusta ennen kuin niitä voidaan käyttää suuressa mittakaavassa teollisuudessa. Reaaliaika Linux ei sovellus nopeisiin ohjauslooppeihin (<100 ms) koska nopeus ei riitä vielä mutta nopeus kasvaa samalla kun prosessorit kehittyvät. Linux soveltuu hyvin rajapinnaksi nopean ohjauksen ja käyttäjän välille ja hitaampaan ohjaukseen.
Resumo:
We consider robust parametric procedures for univariate discrete distributions, focusing on the negative binomial model. The procedures are based on three steps: ?First, a very robust, but possibly inefficient, estimate of the model parameters is computed. ?Second, this initial model is used to identify outliers, which are then removed from the sample. ?Third, a corrected maximum likelihood estimator is computed with the remaining observations. The final estimate inherits the breakdown point (bdp) of the initial one and its efficiency can be significantly higher. Analogous procedures were proposed in [1], [2], [5] for the continuous case. A comparison of the asymptotic bias of various estimates under point contamination points out the minimum Neyman's chi-squared disparity estimate as a good choice for the initial step. Various minimum disparity estimators were explored by Lindsay [4], who showed that the minimum Neyman's chi-squared estimate has a 50% bdp under point contamination; in addition, it is asymptotically fully efficient at the model. However, the finite sample efficiency of this estimate under the uncontaminated negative binomial model is usually much lower than 100% and the bias can be strong. We show that its performance can then be greatly improved using the three step procedure outlined above. In addition, we compare the final estimate with the procedure described in
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
Abstract This work studies the multi-label classification of turns in simple English Wikipedia talk pages into dialog acts. The treated dataset was created and multi-labeled by (Ferschke et al., 2012). The first part analyses dependences between labels, in order to examine the annotation coherence and to determine a classification method. Then, a multi-label classification is computed, after transforming the problem into binary relevance. Regarding features, whereas (Ferschke et al., 2012) use features such as uni-, bi-, and trigrams, time distance between turns or the indentation level of the turn, other features are considered here: lemmas, part-of-speech tags and the meaning of verbs (according to WordNet). The dataset authors applied approaches such as Naive Bayes or Support Vector Machines. The present paper proposes, as an alternative, to use Schoenberg transformations which, following the example of kernel methods, transform original Euclidean distances into other Euclidean distances, in a space of high dimensionality. Résumé Ce travail étudie la classification supervisée multi-étiquette en actes de dialogue des tours de parole des contributeurs aux pages de discussion de Simple English Wikipedia (Wikipédia en anglais simple). Le jeu de données considéré a été créé et multi-étiqueté par (Ferschke et al., 2012). Une première partie analyse les relations entre les étiquettes pour examiner la cohérence des annotations et pour déterminer une méthode de classification. Ensuite, une classification supervisée multi-étiquette est effectuée, après recodage binaire des étiquettes. Concernant les variables, alors que (Ferschke et al., 2012) utilisent des caractéristiques telles que les uni-, bi- et trigrammes, le temps entre les tours de parole ou l'indentation d'un tour de parole, d'autres descripteurs sont considérés ici : les lemmes, les catégories morphosyntaxiques et le sens des verbes (selon WordNet). Les auteurs du jeu de données ont employé des approches telles que le Naive Bayes ou les Séparateurs à Vastes Marges (SVM) pour la classification. Cet article propose, de façon alternative, d'utiliser et d'étendre l'analyse discriminante linéaire aux transformations de Schoenberg qui, à l'instar des méthodes à noyau, transforment les distances euclidiennes originales en d'autres distances euclidiennes, dans un espace de haute dimensionnalité.
Resumo:
GDP has usually been used as a proxy for human well-being. Nevertheless, other social aspects should also be considered, such as life expectancy, infant mortality, educational enrolment and crime issues. With this paper we investigate not only economic convergence but also social convergence between regions in a developing country, Colombia, in the period 1975-2005. We consider several techniques in our analysis: sigma convergence, stochastic kernel estimations, and also several empirical models to find out the beta convergence parameter (cross section and panel estimates, with and without spatial dependence). The main results confirm that we can talk about convergence in Colombia in key social variables, although not in the classic economic variable, GDP per capita. We have also found that spatial autocorrelation reinforces convergence processes through deepening market and social factors, while isolation condemns regions to nonconvergence.