Generalization of Vélu’s formulae for isogenies between elliptic curves
Data(s) |
2007
|
---|---|
Resumo |
Given an elliptic curve E and a finite subgroup G, V ́lu’s formulae concern to a separable isogeny IG : E → E ′ with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P + G as the difference between the abscissa of IG (P ) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstraß coefficients of E ′ as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P +G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Universitat Autònoma de Barcelona. Departament de Matemàtiques |
Relação |
Reproducció del document publicat a http://dx.doi.org/10.5565/PUBLMAT_PJTN05_07 Reproducció del document publicat a http://ddd.uab.cat/record/52?ln=ca Publicacions matemàtiques, 2007, vol. Extra, p. 147–163 |
Direitos |
open access (c) Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007 |
Palavras-Chave | #Elliptic curve #Isogeny #Rational subgroup #Corbes el·líptiques #Nombres, Teoria dels #Anàlisi diofàntica |
Tipo |
article |