941 resultados para isothermal titration calorimetry
Resumo:
In this work we present results of zinc diffusion in GaAs using the liquid phase epitaxy technique from liquid solutions of Ga‐As‐Zn and Ga‐As‐Al‐Zn. Using silicon‐doped n‐GaAs substrates, working at a diffusion temperature of 850 °C, and introducing a dopant concentration ranging 1018–1019 cm−3, the most important findings regarding the diffusion properties are as follows: (a) zinc concentration in the solid depends on the square root of zinc atomic fraction in the liquid; (b) the diffusion is dominated by the interstitial‐substitutional process; (c) the diffusivity D varies as about C3 in the form D=2.9×10−67C3.05; (d) aluminum plays the role of the catalyst of the diffusion process, if it is introduced in the liquid solution, since it is found that D varies as (γAsXlAs)−1; (e) the zinc interstitial is mainly doubly ionized (Zn++i); (f) the zinc diffusion coefficient in Al0.85 Ga0.15 As is about four times greater than in GaAs; (g) by means of all these results, it is possible to control zinc diffusion processes in order to obtain optimized depth junctions and doping levels in semiconductor device fabrication.
Resumo:
Los polímeros cristales líquidos (LCP) son sistemas complejos que forman mesofases que presentan orden orientacional y polímeros amorfos. Con frecuencia, el estado amorfo isotrópico no puede ser estudiado debido a la rápida formación de mesofases. En este trabajo se ha sintetizado y estudiado un nuevo LCP: poli(trietilenglicol metil p, p '-bibenzoato), PTEMeB. Este polímero presenta una formación de mesofase bastante lenta haciendo posible estudiar de forma independiente tanto los estados amorfo y de cristal líquidos. La estructura y las transiciones de fase del PTEMeB han sido investigados por calorimetría (DSC), con MAXS / WAXS con temperatura variable que emplean radiación de sincrotrón y con difracción de rayos X. Estos estudios han mostrado la existencia de dos transiciones vítreas, relacionadas con las fases amorfa y cristal líquido. Se ha realizado un estudio de relajación dieléctrica en amplios intervalos de temperatura y presión. Se ha encontrado que la transición vítrea dinámica de la fase amorfa es más lenta que la del cristal líquido. El estudio de la relajación ? nos ha permitido seguir la formación isoterma de la mesofase a presión atmosférica. Además, con el estudio el comportamiento dinámico a alta presión se ha encontrado que se produce la formación rápida de la mesofase inducida por cambios bruscos de presión. Liquid crystalline polymers (LCPs) are complex systems that include features of both orientationally ordered mesophases and amorphous polymers. Frequently, the isotropic amorphous state cannot be studied due to the rapid mesophase formation. Here, a new main chain LCP, poly(triethyleneglycol methyl p,p'-bibenzoate), PTEMeB, has been synthesized. It shows a rather slow mesophase formation making possible to study independently both the amorphous and the liquid crystalline states. The structure and phase transitions of PTEMeB have been investigated by calorimetry, variable-temperature MAXS/WAXS employing synchrotron radiation, and X-ray diffraction in oriented fibers. These experiments have pointed out the presence of two glass transitions, related to the amorphous or to the liquid crystal phases. Additionally, the mesophase seems to be a coexistence of orthogonal and tilted smectic phases. A dielectric relaxation study of PTEMeB over broad ranges of temperature and pressure has been performed. The dynamic glass transition turns out to be slower for the amorphous state than for the liquid crystal. Monitoring of the α relaxation has allowed us to follow the isothermal mesophase formation at atmospheric pressure. Additionally, the dynamical behavior at high pressures has pointed out the fast formation of the mesophase induced by sudden pressure changes.
Resumo:
The transition that the expansion flow of laser-produced plasmas experiences when one moves from long, low intensity pulses (temperature vanishing at the isentropic plasma-vacuum front,lying at finite distance) to short, intense ones (non-zero, uniform temperature at the plasma-vacuum front, lying at infinity) is studied. For plznar geometry and lqge ion number Z, the transition occurs for dq5/dt=0.14(27/8)k712Z’1zn$/m4f, 12nK,,; mi, and K are laser intensity, critical density,ion mass, and Spitzer’s heat conduction coefficient. This result remains valid for finite Zit,h ough the numerical factor in d$/dt is different. Shorter wavelength lasers and higher 4 plasmas allow faster rising pulses below transition.
Resumo:
Poly(3-hydroxybutyrate) (PHB) nanocomposites containing environmentally-friendly tungsten disulphide inorganic nanotubes (INTeWS2) have been successfully prepared by a simple solution blending method. The dynamic and isothermal crystallization studies by differential scanning calorimetry (DSC) demonstrated that the INTeWS2 exhibits much more prominent nucleation activity on the crystallization of PHB than specific nucleating agents or other nanoscale fillers. Both crystallization rate and crystallinity significantly increase in the nanocomposites compared to neat PHB. These changes occur without modifying the crystalline structure of PHB in the nanocomposites, as shown by wide-angle X-ray diffraction (WAXS) and infrared/Raman spectroscopy. Other parameters such as the Avrami exponent, the equilibrium melting temperature, global rate constant and the fold surface free energy of PHB chains in the nanocomposites were obtained from the calorimetric data in order to determine the influence of the INTeWS2 filler. The addition of INTeWS2 remarkably influences the energetics and kinetics of nucleation and growth of PHB, reducing the fold surface free energy by up to 20%. Furthermore, these nanocomposites also show an improvement in both tribological and mechanical (hardness and modulus) properties with respect to pure PHB evidenced by friction and nanoindentation tests, which is of important potential interest for industrial and medical applications.
Resumo:
We report the construction of two novel Escherichia coli strains (DH1lacdapD and DH1lacP2dapD) that facilitate the antibiotic-free selection and stable maintenance of recombinant plasmids in complex media. They contain the essential chromosomal gene, dapD, under the control of the lac operator/promoter. Unless supplemented with IPTG (which induces expression of dapD) or DAP, these cells lyse. However, when the strains are transformed with a multicopy plasmid containing the lac operator, the operator competitively titrates the LacI repressor and allows expression of dapD from the lac promoter. Thus transformants can be isolated and propagated simply by their ability to grow on any medium by repressor titration selection. No antibiotic resistance genes or other protein expressing sequences are required on the plasmid, and antibiotics are not necessary for plasmid selection, making these strains a valuable tool for therapeutic DNA and recombinant protein production. We describe the construction of these strains and demonstrate plasmid selection and maintenance by repressor titration, using the new pORT plasmid vectors designed to facilitate recombinant DNA exploitation.
Resumo:
Deterministic chaos has been implicated in numerous natural and man-made complex phenomena ranging from quantum to astronomical scales and in disciplines as diverse as meteorology, physiology, ecology, and economics. However, the lack of a definitive test of chaos vs. random noise in experimental time series has led to considerable controversy in many fields. Here we propose a numerical titration procedure as a simple “litmus test” for highly sensitive, specific, and robust detection of chaos in short noisy data without the need for intensive surrogate data testing. We show that the controlled addition of white or colored noise to a signal with a preexisting noise floor results in a titration index that: (i) faithfully tracks the onset of deterministic chaos in all standard bifurcation routes to chaos; and (ii) gives a relative measure of chaos intensity. Such reliable detection and quantification of chaos under severe conditions of relatively low signal-to-noise ratio is of great interest, as it may open potential practical ways of identifying, forecasting, and controlling complex behaviors in a wide variety of physical, biomedical, and socioeconomic systems.
Resumo:
Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents. Detailed structural and mechanistic understanding of these enzymes can be expected to guide the design of new antibacterial compounds resistant to their action. A number of high-resolution structures are available for class A beta-lactamases, whose catalytic mechanism involves the acylation of a serine residue at the active site. The identity of the general base which participates in the activation of this serine residue during catalysis has been the subject of controversy, both a lysine residue and a glutamic acid residue having been proposed as candidates for this role. We have used the pH dependence of chemical modification of epsilon-amino groups by 2,4,6,-trinitrobenzenesulfonate and the pH dependence of the epsilon-methylene 1H and 13C chemical shifts (in enzyme selectively labeled with [epsilon-13C]lysine) to estimate the pKa of the relevant lysine residue, lysine-73, of TEM-1 beta-lactamase. Both methods show that the pKa of this residue is > 10, making it very unlikely that this residue could act as a proton acceptor in catalysis. An alternative mechanism in which this role is performed by glutamate-166 through an intervening water molecule is described.