577 resultados para hydrogenation
Resumo:
We show how hydrogenation of graphene nanoribbons at small concentrations can open venues toward carbon-based spintronics applications regardless of any specific edge termination or passivation of the nanoribbons. Density-functional theory calculations show that an adsorbed H atom induces a spin density on the surrounding π orbitals whose symmetry and degree of localization depends on the distance to the edges of the nanoribbon. As expected for graphene-based systems, these induced magnetic moments interact ferromagnetically or antiferromagnetically depending on the relative adsorption graphene sublattice, but the magnitude of the interactions are found to strongly vary with the position of the H atoms relative to the edges. We also calculate, with the help of the Hubbard model, the transport properties of hydrogenated armchair semiconducting graphene nanoribbons in the diluted regime and show how the exchange coupling between H atoms can be exploited in the design of novel magnetoresistive devices.
Resumo:
A Rh phosphine complex, derived from the Wilkinson’s catalyst, has been immobilized by ion-exchange on the ammonium form of a Al-MCM-41 sample. Ammonium ions have been exchanged by cholamine ions, which act as an amine ligand, and then the Wilkinson’s catalyst has been immobilized by substitution of a phosphine ligand by the anchored amine. This is a novel immobilization procedure, as a ligand, instead of the whole complex, is tethered to the support by ion exchange. The obtained hybrid catalyst has been characterized by Elemental Analysis, DRIFTS and XPS. The quantitative exchange of ammonium by cholamine and coordination of Rh to amines has been observed. Most of the anchored Rh is considered to be coordinated to the ligand tethered to the support and a small proportion seems to be interacting with the protonated ligand or with the support surface. The catalyst has been tested in the hydrogenation of cyclohexene and in the hydroformylation of 1-octene. In the first case the catalyst is active and reusable, while a strong Rh leaching takes place in the second one.
Resumo:
The sulfur resistance of low-loaded monometallic Pt catalysts and bimetallic Pt-W catalysts during the partial selective hydrogenation of styrene, a model compound of Pygas streams, was studied. The effect of metal impregnation sequence on the activity and selectivity was also evaluated. Catalysts were characterized by ICP, TPR, XRD, and XPS techniques. Catalytic tests with sulfur-free and sulfur-doped feeds were performed. All catalysts showed high selectivities (>98%) to ethylbenzene. Activity differences between the catalysts were mainly attributed to electronic effects due to the presence of different electron-rich species of Pt0 and electron-deficient species of Ptδ+. Pt0 promotes the cleavage of H2 while Ptδ+ the adsorption of styrene. The catalyst successively impregnated with W and Pt (WPt/Al) was more active and sulfur resistant than the catalyst prepared with an inverse impregnation order (PtW/Al). The higher poison resistance of WPt/Al was attributed to both steric and electronic effects.
Resumo:
The pre-pilot scale synthesis of 1-phenylethanol was carried out by the cathodic hydrogenation of acetophenone in a 100 cm2 (geometric area) Polymer Electrolyte Membrane Electrochemical Reactor. The cathode was a Pd/C electrode. Hydrogen oxidation on a gas diffusion electrode was chosen as anodic reaction in order to take advantage of the hydrogen evolved during the reduction. This hydrogen oxidation provides the protons needed for the synthesis. The synthesis performed with only a solid polymer electrolyte, spe, has lower fractional conversion although a higher selectivity than that carried out using a support–electrolyte–solvent together with a spe. However, the difference between these two cases is rather small and since the work-up and purification of the final product are much easier when only a spe is used, this last process was chosen for the pre-pilot electrochemical synthesis of 1-phenylethanol.
Resumo:
The Rh diamine complex [Rh(COD)NH2(CH2)2NH(CH2)3Si(OCH3)3] BF4 was heterogenized by covalent bonding on two carbon xerogels and on carbon nanofibers, with the objective of preparing hydrogenation hybrid catalysts. Gas adsorption, SEM, TEM, DTP, ICP-OES and XPS were used for characterization. The results indicate that the active molecule is mainly located in supermicropores and produces microporosity blockage. The hybrid catalysts are more active than the homogeneous complex, but the Rh complex is partially reduced upon reaction. This modification is related to the nature of the support, which also shows effects in the stabilization against sintering of the Rh particles formed. The support porosity is a key factor in the selectivity differences between the catalysts.
Resumo:
The immobilization of the chiral complex RhDuphos, by electrostatic or π–π (adsorption) interactions, on carbon nanotubes and carbon xerogels is investigated. To promote such interactions, the supports were either oxidized or heat treated to create carboxylic type surface groups or an apolar surface, respectively. The catalysts were tested in the hydrogenation of methyl 2-acetamidoacrylate. The prepared hybrid catalysts are less active than the homogeneous RhDuphos, but most of them show a high enantioselectivity and the one prepared with the oxidized carbon xerogel is also reusable, being able to give a high substrate conversion, keeping as well a high enantioselectivity. The anchorage by electrostatic interactions is more interesting than the anchorage by π–π interactions, as the π–π adsorption method produces a modification of the metal complex structure leading to an active hybrid catalyst but without enantioselectivity. The creation of carboxylic groups on the support surface has led to some hindering of the complex leaching.
New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy
Resumo:
In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cathodic conditions, and then they disappear when the potential increases to more positive values. This indicates that carbon–hydrogen bonds are formed reversibly in both electrolytes during cathodic conditions. Comparing the two activated carbons, it was confirmed that, in both electrolytes, the hydrogenation of carbon atoms is produced more easily for the sample with lower amount of surface oxygen groups. In KOH medium, for the two samples, the formation of carbon–hydrogen bonds proceeds at more positive potential with respect to the thermodynamic potential value for hydrogen evolution. Furthermore, changes in the shape of the D band (due to an intensity increase of the D1 band) during the formation of carbon–hydrogen bonds suggest that hydrogenation of the carbon atoms increases the number of edge planes.
Resumo:
Very different carbon materials have been used as support in the preparation of supported ionic liquid phase samples (SILP). Some of them have been oxidized, either strongly (with ammonium persulfate solution) or weakly (with air at 300 °C, 2 h). The purpose is to establish which properties of the supports (e.g., porosity -volume and type-, surface area, oxygen surface chemistry and morphology) determine the IL adsorption capacity and the stability (immobilization) of the supported IL phase. The ionic liquid used in this work is 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]). For each support, samples with different amounts of ionic liquid have been prepared. The maximum IL that can be loaded depends mainly on the total pore volume of the supports. For comparable pore volumes, the porosity type and the oxygen surface content have no influence on the IL loading. The supported IL fills most of the pores, leaving some blocked porosity. The stability of the supported IL phase (especially important for its subsequent use in catalysis) has been tested in water under general hydrogenation conditions (60 °C and 10 bar H2). In general, leaching is low but it increases with the amount of IL loaded and with the oxidation treatments of the supports.
Resumo:
Paper submitted to the 19th International Symposium on Analytical & Applied Pyrolysis, Linz, Austria, 21-25 May 2012.
Resumo:
The main objective of this Doctoral thesis is the preparation of hybrid active catalysts using the SILP (Supported Ionic Liquid Catalysis) methodology and employing carbon materials as support. For that, in first place, SILP samples have been prepared and characterized. In second place, hybrid the SILP catalysts have been prepared, characterized and tested in some hydrogenation reactions, including an asymmetric hydrogenation. The investigated variables are mainly the amount and kind of ionic liquid and the physical, chemical and morphological properties of the support.
Resumo:
A novel procedure for the preparation of solid Pd(II)-based catalysts consisting of the anchorage of designed Pd(II)-complexes on an activated carbon (AC) surface is reported. Two molecules of the Ar–S–F type (where Ar is a plane-pyrimidine moiety, F a Pd(II)-ligand and S an aliphatic linker) differing in F, were grafted on AC by π–π stacking of the Ar moiety and the graphene planes of the AC, thus favouring the retaining of the metal-complexing ability of F. Adsorption of Pd(II) by the AC/Ar–S–F hybrids occurs via Pd(II)-complexation by F. After deep characterization, the catalytic activities of the AC/Ar–S–F/Pd(II) hybrids on the hydrogenation of 1-octene in methanol as a catalytic test were evaluated. 100% conversion to n-octane at T = 323.1 K and P = 15 bar, was obtained with both catalysts and most of Pd(II) was reduced to Pd(0) nanoparticles, which remained on the AC surface. Reusing the catalysts in three additional cycles reveals that the catalyst bearing the F ligand with a larger Pd-complexing ability showed no loss of activity (100% conversion to n-octane) which is assigned to its larger structural stability. The catalyst with the weaker F ligand underwent a progressive loss of activity (from 100% to 79% in four cycles), due to the constant aggregation of the Pd(0) nanoparticles. Milder conditions, T = 303.1 K and P = 1.5 bar, prevent the aggregation of the Pd(0) nanoparticles in this catalyst allowing the retention of the high catalytic efficiency (100% conversion) in four reaction cycles.
Resumo:
Includes bibliographies.
Resumo:
Relatively few cyclic peptides have reached the pharmaceutical marketplace during the past decade, most produced through fermentation rather than made synthetically. Generally, this class of compounds is synthesized for research purposes on milligram scales by solid-phase methods, but if the potential of macrocyclic peptidomimetics is to be realized, low-cost larger scale solution-phase syntheses need to be devised and optimized to provide sufficient quantities for preclinical, clinical, and commercial uses. Here, we describe a cheap, medium-scale, solution-phase synthesis of the first reported highly potent, selective, and orally active antagonist of the human C5a receptor. This compound, Ac-Phe[Orn-Pro-D-Cha-Trp-Arg], known as 3D53, is a macrocyclic peptidomimetic of the human plasma protein C5a and displays excellent antiinflammatory activity in numerous animal models of human disease. In a convergent approach, two tripeptide fragments Ac-Phe-Orn-(Boc)-Pro-OH and H-D-Cha-Trp(For)-Arg-OEt were first prepared by high-yielding solution-phase couplings using a mixed anhydride method before coupling them to give a linear hexapeptide which, after deprotection, was obtained in 38% overall yield from the commercially available amino acids. Cyclization in solution using BOP reagent gave the antagonist in 33% yield (13% overall) after HPLC purification. Significant features of the synthesis were that the Arg side chain was left unprotected throughout, the component Boe-D-Cha-OH was obtained very efficiently via hydrogenation Of D-Phe with PtO2 in TFA/water, the tripeptides were coupled at the Pro-Cha junction to minimize racemization via the oxazolone pathway, and the entire synthesis was carried out without purification of any intermediates. The target cyclic product was purified (>97%) by reversed-phase HPLC. This convergent synthesis with minimal use of protecting groups allowed batches of 50100 g to be prepared efficiently in high yield using standard laboratory equipment. This type of procedure should be useful for making even larger quantities of this and other macrocyclic peptidomimetic drugs.
Resumo:
A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.
Resumo:
Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.