919 resultados para fuzzy genetic algorithms
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.
Resumo:
HLA-G has an important role in the modulation of the maternal immune system during pregnancy, and evidence that balancing selection acts in the promoter and 3′UTR regions has been previously reported. To determine whether selection acts on the HLA-G coding region in the Amazon Rainforest, exons 2, 3 and 4 were analyzed in a sample of 142 Amerindians from nine villages of five isolated tribes that inhabit the Central Amazon. Six previously described single-nucleotide polymorphisms (SNPs) were identified and the Expectation-Maximization (EM) and PHASE algorithms were used to computationally reconstruct SNP haplotypes (HLA-G alleles). A new HLA-G allele, which originated in Amerindian populations by a crossing-over event between two widespread HLA-G alleles, was identified in 18 individuals. Neutrality tests evidenced that natural selection has a complex part in the HLA-G coding region. Although balancing selection is the type of selection that shapes variability at a local level (Native American populations), we have also shown that purifying selection may occur on a worldwide scale. Moreover, the balancing selection does not seem to act on the coding region as strongly as it acts on the flanking regulatory regions, and such coding signature may actually reflect a hitchhiking effect.Genes and Immunity advance online publication, 3 October 2013; doi:10.1038/gene.2013.47.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O avanço nas áreas de comunicação sem fio e microeletrônica permite o desenvolvimento de equipamentos micro sensores com capacidade de monitorar grandes regiões. Formadas por milhares de nós sensores, trabalhando de forma colaborativa, as Redes de Sensores sem Fio apresentam severas restrições de energia, devido à capacidade limitada das baterias dos nós que compõem a rede. O consumo de energia pode ser minimizado, permitindo que apenas alguns nós especiais, chamados de Cluster Head, sejam responsáveis por receber os dados dos nós que formam seu cluster e propagar estes dados para um ponto de coleta denominado Estação Base. A escolha do Cluster Head ideal influencia no aumento do período de estabilidade da rede, maximizando seu tempo de vida útil. A proposta, apresentada nesta dissertação, utiliza Lógica Fuzzy e algoritmo k-means com base em informações centralizadas na Estação Base para eleição do Cluster Head ideal em Redes de Sensores sem Fio heterogêneas. Os critérios usados para seleção do Cluster Head são baseados na centralidade do nó, nível de energia e proximidade para a Estação Base. Esta dissertação apresenta as desvantagens de utilização de informações locais para eleição do líder do cluster e a importância do tratamento discriminatório sobre as discrepâncias energéticas dos nós que formam a rede. Esta proposta é comparada com os algoritmos Low Energy Adaptative Clustering Hierarchy (LEACH) e Distributed energy-efficient clustering algorithm for heterogeneous Wireless sensor networks (DEEC). Esta comparação é feita, utilizando o final do período de estabilidade, como também, o tempo de vida útil da rede.
Resumo:
Este artigo apresenta uma aplicação do método para determinação espectrofotométrica simultânea dos íons divalentes de cobre, manganês e zinco à análise de medicamento polivitamínico/polimineral. O método usa 4-(2-piridilazo) resorcinol (PAR), calibração multivariada e técnicas de seleção de variáveis e foi otimizado o empregando-se o algoritmo das projeções sucessivas (APS) e o algoritmo genético (AG), para escolha dos comprimentos de onda mais informativos para a análise. Com essas técnicas, foi possível construir modelos de calibração por regressão linear múltipla (RLM-APS e RLM-AG). Os resultados obtidos foram comparados com modelos de regressão em componentes principais (PCR) e nos mínimos quadrados parciais (PLS). Demonstra-se a partir do erro médio quadrático de previsão (RMSEP) que os modelos apresentam desempenhos semelhantes ao prever as concentrações dos três analitos no medicamento. Todavia os modelos RLM são mais simples pois requerem um número muito menor de comprimentos de onda e são mais fáceis de interpretar que os baseados em variáveis latentes.
Resumo:
As Redes de Sensores Sem Fio possuem capacidades limitadas de processamento, armazenamento, comunicação (largura de banda) e fonte de energia, além de possuírem características e requisitos básicos de uma RSSF como: necessidade de se auto-organizar, comunicação com difusão de curto alcance e roteamento com múltiplos saltos. Neste trabalho é proposto uma ferramenta que otimize o posicionamento e os pacotes entregues através do uso de Algoritmo Genético (AG). Para solucionar o problema de roteamento que melhore o consumo de energia e maximize a agregação de dados é proposto a utilização de lógica fuzzy no protocolo de roteamento Ad hoc Ondemand Distance Vector (AODV). Esta customização é intitulada AODV – Fuzzy for Wireless Sensor Networks (AODV-FWSN). Os resultados mostram que a solução proposta é eficiente e consegue prolongar a vida útil da RSSF e melhorar a taxa de entrega de dados quando comparado com soluções similares.
Resumo:
O presente trabalho demonstra a aplicação de um Algoritmo Genético com o intuito de projetar um controlador Fuzzy MISO, através da sintonia de seus parâmetros, em um processo experimental de nivelamento de líquido em um tanque, cuja dinâmica apresenta características não-lineares. Para o projeto e sintonia do controlador, foi utilizado o suporte do software Matlab, e seus pacotes Simulink e Global Optimization Toolbox. O Controlador Fuzzy ora projetado teve seu desempenho avaliado através de ensaios em tempo real em um Sistema de Nível de Liquido.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper describes a new methodology adopted for urban traffic stream optimization. By using Petri net analysis as fitness function of a Genetic Algorithm, an entire urban road network is controlled in real time. With the advent of new technologies that have been published, particularly focusing on communications among vehicles and roads infrastructures, we consider that vehicles can provide their positions and their destinations to a central server so that it is able to calculate the best route for one of them. Our tests concentrate on comparisons between the proposed approach and other algorithms that are currently used for the same purpose, being possible to conclude that our algorithm optimizes traffic in a relevant manner.
Resumo:
Sao Paulo State Research Foundation-FAPESP
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we investigate the problem of routing connections in all-optical networks while allowing for degradation of routed signals by different optical components. To overcome the complexity of the problem, we divide it into two parts. First, we solve the pure RWA problem using fixed routes for every connection. Second, power assignment is accomplished by either using the smallest-gain first (SGF) heuristic or using a genetic algorithm. Numerical examples on a wide variety of networks show that (a) the number of connections established without considering the signal attenuation was most of the time greater than that achievable considering attenuation and (b) the genetic solution quality was much better than that of SGF, especially when the conflict graph of the connections generated by the linear solver is denser.
Resumo:
Background: Warfarin-dosing pharmacogenetic algorithms have presented different performances across ethnicities, and the impact in admixed populations is not fully known. Aims: To evaluate the CYP2C9 and VKORC1 polymorphisms and warfarin-predicted metabolic phenotypes according to both self-declared ethnicity and genetic ancestry in a Brazilian general population plus Amerindian groups. Methods: Two hundred twenty-two Amerindians (Tupinikin and Guarani) were enrolled and 1038 individuals from the Brazilian general population who were self-declared as White, Intermediate (Brown, Pardo in Portuguese), or Black. Samples of 274 Brazilian subjects from Sao Paulo were analyzed for genetic ancestry using an Affymetrix 6.0 (R) genotyping platform. The CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), and VKORC1 g.-1639G>A (rs9923231) polymorphisms were genotyped in all studied individuals. Results: The allelic frequency for the VKORC1 polymorphism was differently distributed according to self-declared ethnicity: White (50.5%), Intermediate (46.0%), Black (39.3%), Tupinikin (40.1%), and Guarani (37.3%) (p < 0.001), respectively. The frequency of intermediate plus poor metabolizers (IM + PM) was higher in White (28.3%) than in Intermediate (22.7%), Black (20.5%), Tupinikin (12.9%), and Guarani (5.3%), (p < 0.001). For the samples with determined ancestry, subjects carrying the GG genotype for the VKORC1 had higher African ancestry and lower European ancestry (0.14 +/- 0.02 and 0.62 +/- 0.02) than in subjects carrying AA (0.05 +/- 0.01 and 0.73 +/- 0.03) (p = 0.009 and 0.03, respectively). Subjects classified as IM + PM had lower African ancestry (0.08 +/- 0.01) than extensive metabolizers (0.12 +/- 0.01) (p = 0.02). Conclusions: The CYP2C9 and VKORC1 polymorphisms are differently distributed according to self-declared ethnicity or genetic ancestry in the Brazilian general population plus Amerindians. This information is an initial step toward clinical pharmacogenetic implementation, and it could be very useful in strategic planning aiming at an individual therapeutic approach and an adverse drug effect profile prediction in an admixed population.
Resumo:
A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.
Resumo:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).