881 resultados para fine-grained control


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concentrations of Fe, Mg, Ca, Sr, Mn, Zn, and other heavy metals were analyzed by atomic absorption spectrometry in 27 chert samples from the Pacific deep sea, 17 chert samples from land, and 4 associated sediments from the Pacific Ocean. Among the elements, Fe and Mg concentrations are highly correlatable as are the relationships between Ca and Sr, or between Ca and CO2. The correlation between Fe and Mg is particularly high for Pacific deep-sea flints and cherts, and for cherts of deep-sea origin from outcrops on land. Enrichments in heavy metals were recognized in some deep-sea cherts; volcanogenic cherts are enriched in Fe, a chert nodule containing basaltic fragments is enriched in Zn and Cr, and biogenically enclosed carbonates in flint nodules are enriched in Mn. The correlation of Fe and Mg and their constant ratio [Mg(%)/Fe(%)] of around 0.33 might be characteristic features in the pelagic clays contained in deep-sea flints and cherts, and the concentrations of heavy metals in them would be controlled by the concentrations of Fe-Mg correlated clays. Although the mineralogical nature of the Fe-Mg clay in deep-sea cherts was not clarified by dissolution experiments on opaline minerals in chert, the high concentrations of Fe-montmorillonite and fine-grained olivine or other ferromagnesian silicate minerals in the clay may result in the high correlations between Fe and Mg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the planktonic foraminifer biostratigraphy of the sites drilled during Ocean Drilling Program Leg 124 in the Celebes and Sulu Seas. It discusses preservation of foraminifers in pelagic sediments and in calcareous turbidites. In the Celebes Sea, pelagic carbonates are only found in the Eocene and Oligocene at Site 770. The faunas are poorly preserved due to severe dissolution and offer little biostratigraphic detail. In the Sulu Sea, pelagic carbonates are found in the upper Pliocene and Pleistocene at Sites 768 and 769 and throughout the recovered sequence at the shallower Site 771. The foraminifer faunas from these sediments allow for recognition of most standard zones. Variations in preservation of pelagic foraminifer faunas with time are due to changes in the depth of the lysocline. Shifts to improved preservation at Sites 768 and 769 are synchronous in the upper Pliocene/Pleistocene and may be related to global sea-level cycles. Planktonic foraminifers are also abundant in calcareous turbidites, which were deposited in both basins from the late Miocene onward. However, the turbidites are fine-grained, and biostratigraphic marker species are absent as a result of size-sorting during transport. In the Celebes Sea, shelf-derived material was a major component of early-late Miocene and middle Pliocene to early Pleistocene turbidites. Changes in the composition of the turbidites may correspond to global sea-level changes. In the Sulu Sea, a shift from shelf-derived material in Pliocene calcareous turbidites to a pelagic source in the Pleistocene may be related to subsidence of the Cagayan Ridge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, metalliferous sediments have been discovered overlying newly generated oceanic crust in the East Pacific, North Atlantic, Indian Ocean, Red Sea, Gulf of Aden, and elsewhere (e.g., Boström, 1973; Lalou et al., 1977; Bischoff, 1969; Boström and Fisher, 1971; Cann et al., 1977, respectively). Such material has also been recovered by drilling from sediments lying upon older oceanic crust (Boström et al., 1972, 1976; Horowitz and Cronan, 1976). Hydrothermal circulation of seawater at a spreading ridge results in the leaching of Fe, Mn, and possibly other elements from the basaltic volcanic layer and their transport and discharge into ocean bottom waters, whereupon fine-grained Fe-Mn-rich precipitates form and settle into the ambient sediment (cf. Corliss, 1971; Dasch et al., 1971; Spooner and Fyfe, 1973; Bischoff and Dickson, 1975; Heath and Dymond, 1977; Corliss et al., 1979, Edmond et al., 1979). Mn-rich crusts have also been recovered from active ridges and are inferred to have formed in the vicinity of hydrothermal discharge areas (Scott et al., 1974; Moore and Vogt, 1976; Corliss et al., 1978; Hoffert et al., 1978). The source of the trace elements in the metalliferous deposits is generally not clear. They may be derived from seawater by adsorption onto the precipitates or crusts, or from hydrothermal solutions which have leached them from the basalts. Pb, however, can be used as a geochemical tracer because of the known isotopic compositional differences between oceanic basalts and seawater. Isotopic investigations of Pb in ferruginous sediments from the East Pacific have shown that it has been derived partly or mostly from a basaltic source (Bender et al., 1971; Dasch et al., 1971; Dymond et al., 1973). In the present study, Pb isotopic analyses have been made of a suite of metalliferous sediments (nontronite, Mn-oxide crust, Mn-Fe-oxide mud), pelagic sediments, and basalts from the Galapagos mounds area. The main purposes of the Pb study were to determine the source or sources of Pb in the metalliferous sediments, and whether or not stratigraphic variations exist in the isòtopic composition of Pb in the sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on grain-size, mineralogical and chemical analyses of samples collected in cruises of R/V Ekolog (Institute of Northern Water Problems, Karelian Research Centre of RAS, Petrozavodsk) in 2001 and 2003 regularities of chemical element distribution in surface layer bottom sediments of the Kem' River Estuary in the White Sea were studied. For some toxic elements labile and refractory forms were determined. Correlation analysis was carried out and ratios Me/Al were calculated as proxies of terrigenous contribution. Distribution of such elements as Fe, Mn, Zn, Cr, Ti was revealed to be influenced by natural factors, mainly by grain size composition of bottom sediments. These metals have a tendency for accumulation in fine-grained sediments with elevated organic carbon contents. Distribution of Ni is different from one of Fe, Mn, Zn, Cr, Ti. An assumption was made that these distinctions were caused by anthropogenic influence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed major- and trace-element chemistry is presented for 41 sediment samples from DSDP Site-223 borehole cores. A marked change in chemical (and mineralogical) character is shown at the end of the Early Miocene Epoch which relates to tectonic events and associated changes in sedimentary regime. Enrichment in the contents of such elements as Mg, Cr and Ni compared with average values for fine-grained sediments occurs throughout the sequence and is particularly marked in the upper group of samples. A basic-ultrabasic provenance is suggested - the Oman ophiolites. Leaching with combined acid-reducing agent indicated typical lithogenous-character ordering for the elements and emphasised the enrichment of Mg, Cr, Ni (and Li, Cu, Zn, Pb, Fe and Ti) over values for near-shore muds and terrigenous material. Factor analysis on the bulk chemical data identifies the main lithogenous and biogenous components, subdividing the latter. It separates the upper and lower group of chemically dissimilar sediments and delineates a Mn-hydroxide phase. It also shows the essentially independent roles of Na, Ba and P.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comparative analysis of grain size composition of shallow water terrigenous sediments from the southeastern Laptev Sea was carried out using methods developed by V.P. Petelin and A. Atterberg. Potential of these methods and possibilities of improvement of domestic techniques for grain size analysis are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle mixing rates have been determined for 5 South Atlantic/Antarctic and 3 equatorial Pacific deep-sea cores using excess 210Pb and 32Si measurements. Radionuclide profiles from these siliceous, calcareous, and clay-rich sediments have been evaluated using a steady state vertical advection diffusion model. In Antarctic siliceous sediments210Pb mixing coefficients (0.04-0.16 cm**2/y) are in reasonable agreement with the 32Si mixing coefficient (0.2 or 0.4 cm**2/y, depending on 32Si half-life). In an equatorial Pacific sediment core, however, the 210Pb mixing coefficient (0.22 cm**2/y) is 3-7 times greater than the 32Si mixing coefficient (0.03 or 0.07 cm**2/y). The difference in 210Pb and 32Si mixing rates in the Pacific sediments results from: (1) non-steady state mixing and differences in characteristic time and depth scales of the two radionuclides, (2) preferential mixing of fine-grained clay particles containing most of the 210Pb activity relative to coarser particles (large radiolaria) containing the 32Si activity, or (3) the supply of 222Rn from the bottom of manganese nodules which increases the measured excess 210Pb activity (relative to 226Ra) at depth and artificially increases the 210Pb mixing coefficient. Based on 32Si data and pore water silica profiles, dissolution of biogenic silica in the sediment column appears to have a minor effect on the 32Si profile in the mixed layer. Deep-sea particle mixing rates reported in this study and the literature do not correlate with sediment type, sediment accumulation rate, or surface productivity. Based on differences in mixing rate among three Antarctic cores collected within 50 km of each other, local variability in the intensity of deep-sea mixing appears to be as important as regional differences in sediment properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution, multichannel seismic data collected across the Great Bahama Bank margin and the adjacent Straits of Florida indicate that the deposition of Neogene-Quaternary strata in this transect are controlled by two sedimentation mechanisms: (1) west-dipping layers of the platform margin, which are a product of sea-level-controlled, platform-derived downslope sedimentation; and (2) east- or north-dipping drift deposits in the basinal areas, which are deposited by ocean currents. These two sediment systems are active simultaneously and interfinger at the toe-of-slope. The prograding system consists of sigmoidal clinoforms that advanced the margin some 25 km into the Straits of Florida. The foresets of the clinoforms are approximately 600 m high with variable slope angles that steepen significantly in the Pleistocene section. The seismic facies of the prograding clinoforms on the slope is characterized by dominant, partly chaotic, cut-and-fill geometries caused by submarine canyons that are oriented downslope. In the basin axis, seismic geometries and facies document deposition from and by currents. Most impressive is an 800-m-thick drift deposit at the confluence of the Santaren Channel and the Straits of Florida. This "Santaren Drift" is slightly asymmetric, thinning to the north. The drift displays a highly coherent seismic facies characterized by a continuous succession of reflections, indicating very regular sedimentation. Leg 166 of the Ocean Drilling Program (ODP) drilled a transect of five deep holes between 2 and 30 km from the modern platform margin and retrieved the sediments from both the slope and basin systems. The Neogene slope sediments consist of peri-platform oozes intercalated with turbidites, whereas the basinal drift deposits consist of more homogeneous, fine-grained carbonates that were deposited without major hiatuses by the Florida Current starting at approximately 12.4 Ma. Sea-level fluctuations, which controlled the carbonate production on Great Bahama Bank by repeated exposure of the platform top, controlled lithologic alternations and hiatuses in sedimentation across the transect. Both sedimentary systems are contained in 17 seismic sequences that were identified in the Neogene-Quaternary section. Seismic sequence boundaries were identified based on geometric unconformities beneath the Great Bahama Bank. All the sequence boundaries could be traced across the entire transect into the Straits of Florida. Biostratigraphic age determinations of seismic reflections indicate that the seismic reflections of sequence boundaries have chronostratigraphic significance across both depositional environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ODP Hole 740A is located on the inner part of the East Antarctic continental shelf in Prydz Bay, at the seaward end of a major onshore rift structure known as the Lambert Graben. Drilling at this site led to the recovery of some 65 m of continental sediments (Prydz Bay red beds) that form part of a much thicker (2-3 km) pre-continental breakup sequence, the development of which may be related to the initiation and rifting of the Lambert Graben. Palynological and paleomagnetic studies have not been able to determine the age of the sediments; they may be equivalent to the onshore late Permian Amery Group or younger. The succession consists predominantly of sandstone, siltstone, and claystone arranged in erosively based, pedogenically influenced fining-upward sequences up to 5 m thick. These were deposited by shallow, braided streams draining an extensively vegetated alluvial plain, with sufficient topographic relief to trap fine-grained sediment and inhibit rapid channel shifting. Pedogenic processes were initiated on the alluvial plain, but climatic conditions were generally unsuitable for extensive pedogenic carbonate formation and the development of mature soil profiles. The sediments were probably derived from a rapidly uplifted fault block terrain composed of upper Proterozoic and Archaean gneisses lying to the southeast of the depositional site. Uplift may have taken place along the tectonically active seaward extension of the eastern faulted margin of the Lambert Graben, which passes immediately southeast of Hole 740A. Differences in mineralogical composition between the Amery Group and the Prydz Bay red beds probably reflect differences in rock composition in the source area. The age of the Prydz Bay red beds has still to be resolved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence for the Chesapeake Bay Crater as the source for New Jersey continental margin ejecta is provided by fine-grained tektites and coarse-grained unmelted ejecta. The Upper Eocene ejecta deposit, now demonstrated to be part of the North American strewn field, occurs on the New Jersey continental margin at Ocean Drilling Program (ODP) Sites 904 and 903. The mineralogy, major oxide composition of the ejecta materials, and biostratigraphic age of the enclosing sediments link the origin of these ejecta to the recently recognized Chesapeake Bay impact crater, located only 330 km away. Sediments associated with the ejecta provide information about the dynamics of impact events. The 35-cm-thick ejecta-bearing layer can be subdivided into three subunits that indicate a sequence of events. Bottom subunit III documents sediment failure and deposition of gravel-sized fragments, middle subunit II records deposition of abundant sand-sized ejecta by gravity settling, and upper subunit I contains a 12-cm-thick sedimentary deposit containing rare silt-sized tektites and evidence of waning currents. These events are interpreted by linking sediment deposition to seismic ground motion and subsequent tsunami waves triggered by both the Chesapeake Bay impact and slope failures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current attempts to understand climatic variability during the early to middle Pliocene require paleoceanographic information from the Pacific and Indian Oceans that may serve to test and/or constrain future circulation models. Ocean Drilling Program (ODP) Sites 885/886 are located in the central subarctic North Pacific at water depths exceeding 5700 m. Recent studies of rock magnetic properties suggest that the fine-grained Fe oxide component in sediment at Sites 885/886 experienced reductive dissolution during the early-middle Gilbert. Because such an interval in the North Pacific Red Clay Province suggests a maximum in the sedimentary flux of organic carbon and/or a minimum in bottom water dissolved O2 concentrations (and hence, a peak change in North Pacific oceanographic conditions), a geochemical investigation was conducted to test the hypothesis. Quaternary sediment at Hole 886B was subjected to an oxyhydroxide removal procedure, and chemical analyses indicate that bulk sediment concentrations of Fe and the Fe/Sc ratio decrease significantly upon reductive dissolution. Downcore chemical analyses of untreated sediment at Hole 886B demonstrate that similar depletions also occur across the proposed interval of reduced sediment. Downcore chemical analyses also indicate that a pronounced increase in the Ba/Sc ratio occurs across the interval. These results are consistent with an interpretation that abyssal sediment of the North Pacific experienced a decrease in redox conditions during the early-middle Gilbert, and that this change in oxidation state was related to a peak in paleoproductivity. If the zenith of late Miocene to middle Pliocene enhanced productivity observed at other Indo-Pacific divergence regions similarly can be constrained to the early-middle Gilbert, there exists an oceanographic boundary condition in which to test future models concerning Pliocene warmth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tops of the Emperor chain guyots, which were drilled during Leg 55, lie above the carbonate compensation depth (CCD), as well as above the foraminiferal dissolution level, i.e., lysocline. They are therefore the sites of accumulation of pelagic foraminiferal nannofossil ooze, such accumulation having taken place here since the moment of the seamounts' subsidence and the termination of shallow-water carbonate accumulation which was formerly developed on their tops. But the existence of strong bottom currents over the tops and slope scarps limits, and at some places reduces to zero, sedimentation of any pelagic particles. At such areas there are formed thick iron-manganese crusts. The seamounts drilled on Leg 55 are within the northern (Boreal) belt of biogenic silica accumulation, which existed in the northern Pacific throughout the Neogene. This circumstance presupposes a possible enrichment of the relatively fine-grained sediments with biogenic silica - diatoms and radiolarians.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abyssal mud waves (or fine-grained sediment waves) are often cited as evidence for deep current activity because subbottom profiles show that the wave form has migrated with time. The migration history of a fine-grained sediment wave on the Blake-Bahama Outer Ridge (ODP Site 1062) has been studied through the analysis of multiple ODP holes spaced across the wave. Additional information about wave migration patterns comes from 3.5-kHz records and watergun seismic profiles. These data suggest that wave migration has varied during the last not, vert, similar ~10 Myr, although the only sediments sampled are younger than 4.8 Ma. Seismic profiles suggest wave migration was initiated about 8-10 Ma, and wave migration was pronounced from about 5 Ma to about 1 Ma (with an episode of wave reorganization about 4.5 Ma). Analysis of ODP cores suggests that migration rates have been somewhat lower and more variable during the last 1 Myr. Intervals of no wave migration are observed for several time intervals and appear to characterize deglaciations, especially during the last 500 kyr. Comparisons between seismic profiles and the core record show that most of the seismic horizons correlate closely with time horizons, and thus that the seismic profiles give a reasonable representation of sediment wave migration. Models suggest that wave migration is more pronounced during periods of higher bottom current flow and less pronounced during periods of lower current flow. Thus the migration record is consistent with generally higher bottom flow speeds at this site prior to 1 Ma and lower bottom flow speeds after 1 Ma. The Mid-Pleistocene Transition from a dominant climatic periodicity of 40 kyr to a dominant climatic periodicity of 100 kyr starts at about this time, suggesting an overall reduction in bottom flow speed at this site coincident with changing climate patterns. These changes in flow speed could be related to changes in the depth of the Western Boundary Undercurrent as well as to changes in the speed of thermohaline circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the Cape Verde Plateau, Neogene deposits are composed of major pelagic and hemipelagic sediments. These sediments show climatic sequences composed of two lithologic terms that differ in their siliciclastic and carbonate contents. Several turbiditic and contouritic sequences are interbedded in these deposits. Turbidite sequences are fine grained and thin bedded with a very low frequency (about 12 sequences during the Neogene). They are composed of quartz-rich siliciclastic or volcaniclastic sediments. Quartz-rich turbidites originated from the Senegalese margin. Their slightly higher frequency during the early Pliocene indicates that the stronger turbidity currents, and probably the most abundant continental inputs, occur at that period. Volcaniclastic turbidites are only present in the early Miocene (about 17 Ma) and the early Pleistocene (1 Ma). They have flown from adjacent Cape Verde Islands and reflect two episodes of high volcanic activity in this area. Contourite sequences, composed of biogenic sandy silts, represent less than 5% of the sediment pile and seem to have been mainly deposited during the late Pleistocene. These different sequences show clay mineral variations throughout Neogene time. Kaolinite is predominant in the Miocene and lower Pliocene deposits; this mineral decreases thereafter, with an increased trend of illite in the uppermost Pliocene and Pleistocene sediments, suggesting a change in sediment sources on the Saharan continent at about 2.6 Ma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cretaceous benthic foraminifers from Site 585 in the East Mariana Basin, western Pacific Ocean, provide an environmental and tectonic history of the Basin and the surrounding seamounts. Age diagnostic species (from a fauna of 155 benthic species identified) range from late Aptian to Maestrichtian in age. Displaced species in sediments derived from the tops and flanks of nearby seamounts were deposited sporadically on the Basin floor well below the carbonate compensation depth (CCD) at abyssal depths of 5000 to 6000 m. These depths, characterized by an indigenous assemblage of benthic foraminifers, recrystallized radiolarians, fish debris, and sponge spicules, existed in the Mariana Basin from late Aptian to the present. Early Albian and older edifice-building volcanism had reached the photic zone with associated shallow-water bank or reef environments. By middle Albian, the dominant source areas subsided to outer-neritic to upper-bathyal depths. Major volcanic activity ceased and fine-grained sediments were deposited by distal turbidites, although intermittent volcanism and the influx of rare neritic material continued until the late Albian. By the Cenomanian to Turonian, upper- to middle-bathyal depths were reached by the dominant source areas, and the sediments recovered from this interval include organic carbon-rich layers. Rare benthic foraminifers from the Coniacian-Santonian interval indicate a continuation of dominantly middle-bathyal source areas. A change in sedimentation during the Campanian-Maestrichtian from older zeolitic claystone to abundant chert in the Campanian, and nannofossil chalk and claystone in the Maestrichtian resulted from migration of the site beneath the equatorial productive zone due to northwestward plate motion. The appearance of rare middle-neritic and upper-bathyal species in the Maestrichtian interval associated with volcanogenic debris gives evidence of the remobilization and downslope transport of pelagic deposits due to thermally induced uplift. Episodic redeposition of shallow-water material during the Aptian-Albian was produced by edifice-building volcanism perhaps combined with eustatic lowering of sea level. The Cenomanian-Turonian pulse coincided with a low global sea-level stand as does the transported material during the Coniacian-Santonian. The Maestrichtian pulse was caused by renewed midplate volcanism that extended over a large area of the central Pacific.