959 resultados para evoked brain stem response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOUND OBJECTS IN TIME, SPACE AND ACTIONThe term "sound object" describes an auditory experience that is associated with an acoustic event produced by a sound source. At cortical level, sound objects are represented by temporo-spatial activity patterns within distributed neural networks. This investigation concerns temporal, spatial and action aspects as assessed in normal subjects using electrical imaging or measurement of motor activity induced by transcranial magnetic stimulation (TMS).Hearing the same sound again has been shown to facilitate behavioral responses (repetition priming) and to modulate neural activity (repetition suppression). In natural settings the same source is often heard again and again, with variations in spectro-temporal and spatial characteristics. I have investigated how such repeats influence response times in a living vs. non-living categorization task and the associated spatio-temporal patterns of brain activity in humans. Dynamic analysis of distributed source estimations revealed differential sound object representations within the auditory cortex as a function of the temporal history of exposure to these objects. Often heard sounds are coded by a modulation in a bilateral network. Recently heard sounds, independently of the number of previous exposures, are coded by a modulation of a left-sided network.With sound objects which carry spatial information, I have investigated how spatial aspects of the repeats influence neural representations. Dynamics analyses of distributed source estimations revealed an ultra rapid discrimination of sound objects which are characterized by spatial cues. This discrimination involved two temporo-spatially distinct cortical representations, one associated with position-independent and the other with position-linked representations within the auditory ventral/what stream.Action-related sounds were shown to increase the excitability of motoneurons within the primary motor cortex, possibly via an input from the mirror neuron system. The role of motor representations remains unclear. I have investigated repetition priming-induced plasticity of the motor representations of action sounds with the measurement of motor activity induced by TMS pulses applied on the hand motor cortex. TMS delivered to the hand area within the primary motor cortex yielded larger magnetic evoked potentials (MEPs) while the subject was listening to sounds associated with manual than non- manual actions. Repetition suppression was observed at motoneuron level, since during a repeated exposure to the same manual action sound the MEPs were smaller. I discuss these results in terms of specialized neural network involved in sound processing, which is characterized by repetition-induced plasticity.Thus, neural networks which underlie sound object representations are characterized by modulations which keep track of the temporal and spatial history of the sound and, in case of action related sounds, also of the way in which the sound is produced.LES OBJETS SONORES AU TRAVERS DU TEMPS, DE L'ESPACE ET DES ACTIONSLe terme "objet sonore" décrit une expérience auditive associée avec un événement acoustique produit par une source sonore. Au niveau cortical, les objets sonores sont représentés par des patterns d'activités dans des réseaux neuronaux distribués. Ce travail traite les aspects temporels, spatiaux et liés aux actions, évalués à l'aide de l'imagerie électrique ou par des mesures de l'activité motrice induite par stimulation magnétique trans-crânienne (SMT) chez des sujets sains. Entendre le même son de façon répétitive facilite la réponse comportementale (amorçage de répétition) et module l'activité neuronale (suppression liée à la répétition). Dans un cadre naturel, la même source est souvent entendue plusieurs fois, avec des variations spectro-temporelles et de ses caractéristiques spatiales. J'ai étudié la façon dont ces répétitions influencent le temps de réponse lors d'une tâche de catégorisation vivant vs. non-vivant, et les patterns d'activité cérébrale qui lui sont associés. Des analyses dynamiques d'estimations de sources ont révélé des représentations différenciées des objets sonores au niveau du cortex auditif en fonction de l'historique d'exposition à ces objets. Les sons souvent entendus sont codés par des modulations d'un réseau bilatéral. Les sons récemment entendus sont codé par des modulations d'un réseau du côté gauche, indépendamment du nombre d'expositions. Avec des objets sonores véhiculant de l'information spatiale, j'ai étudié la façon dont les aspects spatiaux des sons répétés influencent les représentations neuronales. Des analyses dynamiques d'estimations de sources ont révélé une discrimination ultra rapide des objets sonores caractérisés par des indices spatiaux. Cette discrimination implique deux représentations corticales temporellement et spatialement distinctes, l'une associée à des représentations indépendantes de la position et l'autre à des représentations liées à la position. Ces représentations sont localisées dans la voie auditive ventrale du "quoi".Des sons d'actions augmentent l'excitabilité des motoneurones dans le cortex moteur primaire, possiblement par une afférence du system des neurones miroir. Le rôle des représentations motrices des sons d'actions reste peu clair. J'ai étudié la plasticité des représentations motrices induites par l'amorçage de répétition à l'aide de mesures de potentiels moteurs évoqués (PMEs) induits par des pulsations de SMT sur le cortex moteur de la main. La SMT appliquée sur le cortex moteur primaire de la main produit de plus grands PMEs alors que les sujets écoutent des sons associée à des actions manuelles en comparaison avec des sons d'actions non manuelles. Une suppression liée à la répétition a été observée au niveau des motoneurones, étant donné que lors de l'exposition répétée au son de la même action manuelle les PMEs étaient plus petits. Ces résultats sont discuté en termes de réseaux neuronaux spécialisés impliqués dans le traitement des sons et caractérisés par de la plasticité induite par la répétition. Ainsi, les réseaux neuronaux qui sous-tendent les représentations des objets sonores sont caractérisés par des modulations qui gardent une trace de l'histoire temporelle et spatiale du son ainsi que de la manière dont le son a été produit, en cas de sons d'actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the ACuteTox project aimed at the development of non-animal testing strategies for predicting human acute oral toxicity, aggregating brain cell cultures (AGGR) were examined for their capability to detect organ-specific toxicity. Previous multicenter evaluations of in vitro cytotoxicity showed that some 20% of the tested chemicals exhibited significantly lower in vitro toxicity as expected from in vivo toxicity data. This was supposed to be due to toxicity at supracellular (organ or system) levels. To examine the capability of AGGR to alert for potential organ-specific toxicants, concentration-response studies were carried out in AGGR for 86 chemicals, taking as endpoints the mRNA expression levels of four selected genes. The lowest observed effect concentration (LOEC) determined for each chemical was compared with the IC20 reported for the 3T3/NRU cytotoxicity assay. A LOEC lower than IC20 by at least a factor of 5 was taken to alert for organ-specific toxicity. The results showed that the frequency of alerts increased with the level of toxicity observed in AGGR. Among the chemicals identified as alert were many compounds known for their organ-specific toxicity. These findings suggest that AGGR are suitable for the detection of organ-specific toxicity and that they could, in conjunction with the 3T3/NRU cytotoxicity assay, improve the predictive capacity of in vitro toxicity testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS: To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS: Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION: Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.Methods: We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis. Results: Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits. Conclusions: Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stratified epithelia of mammals contain adult stem/progenitor cells that are instrumental for renewal, regeneration and repair. We have recently demonstrated, using clonal and functional analysis, that all stratified epithelia contain clonogenic stem cells that can respond to skin morphogenetic signals, while cells obtained from simple or pseudo-stratified epithelia cannot. A genome-wide expression analysis favors multilineage priming rather than reprogramming. Collectively, these observations are reminiscent of epithelial metaplasia, a phenomenon in which a cell adopts the phenotype of another epithelial cell, often in response to repeated environmental stress, e.g. smoking, alcohol and micro-traumatisms. Furthermore, they support the notion that metaplasia results from the expression of an unseen potency, revealed by an environmental deficiency. The thymus supposedly contains only progenitor epithelial cells but no stem cells. We have demonstrated that the thymus also contains a small population of clonogenic cells that can function as bona fide multipotent hair follicle stem cells in response to an inductive skin microenvironment and a genome-wide expression analysis indicates that it correlates with robust changes in the expression of genes important for thymus identity. Hence, multilineage priming or reprogramming can account for the fate change of epithelial stem/progenitor cells in response to a varying microenvironment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Cultured autologous epidermal stem cells are used to treat extensively burned patients. However, engraftment is variable and it is fundamental to know 1- how many stem cells survive the stress of transplantation and 2- how many stem cells are needed for long-term self-renewal of the regenerated epidermis. Therefore, we have recapitulated the transplantation of autologous cultured epidermal stem cells in the minipig to investigate the cellular and molecular mechanisms involved in engraftment. Methods: Pig keratinocytes were cultivated according to the protocol used in human epidermal cell therapy. Human surgical procedures were adapted to the pig. Engraftment was evaluated clinically and by histology. The presence of epidermal stem cells was evaluated by clonal analysis. The presence of dividing or apoptotic cells was revealed by Ki67 and cleaved-caspase3 immunostaining respectively. Results: The skin of the pig closely resembles human skin and contains clonogenic keratinocytes that can be serially cultivated, cloned or transduced with a gene encoding GFP (Green Fluorescent Protein) by means of recombinant retroviral vectors. Cultured epidermal autografts can be successfully transplanted and their behavior recapitulate our observations in the human. Our experiments confirm that the number of epidermal stem cells rapidly decreases following transplantation. Most importantly, the regenerated epithelium contains dividing cells but little apoptotic cells, thus indicating that transplanted stem cells are pushed toward differentiation in response to the transplantation procedure. Conclusions: The minipig model is extremely useful to investigate stem cell fate during transplantation in human. Understanding engraftment is crucial to improve cell therapy and to design a more efficient generation of epidermal stem cell based products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient approximately 2 Hz slowing of theta oscillations and an increase in beta-2 (20-35 Hz) activity only after YKP10A. Gamma activity (35-60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.