720 resultados para engineering graphics
Resumo:
A key issue in UK railway history is whether the railway system was an efficient response to the traffic requirements of the economy. The UK railway system was constructed entirely by private enterprise with minimal state subsidies. This chapter considers whether the railway system was 'over-built' because the government ignored the advice of the Railway Committee of the Board of Trade. The chapter suggests that the system was over-built by about 35 per cent. The causes of this over-building are investigated and are found to be mainly social and political failures arising from distrust between MPs and civil servants and public pressure on local MPs to ensure that their constituencies were well served by railways.
Resumo:
Food industry is critical to any nation’s health and well-being; it is also critical to the economic health of a nation, since it can typically constitute over a fifth of the nation’s manufacturing GDP. Food Engineering is a discipline that ought to be at the heart of the food industry. Unfortunately, this discipline is not playing its rightful role today: engineering has been relegated to play the role of a service provider to the food industry, instead of it being a strategic driver for the very growth of the industry. This paper hypothesises that food engineering discipline, today, seems to be continuing the way it was in the last century, and has not risen to the challenges that it really faces. This paper therefore categorises the challenges as those being posed by: 1. Business dynamics, 2. Market forces, 3. Manufacturing environment and 4. Environmental Considerations, and finds the current scope and subject-knowledge competencies of food engineering to be inadequate in meeting these challenges. The paper identifies: a) health, b) environment and c) security as the three key drivers of the discipline, and proposes a new definition of food engineering. This definition requires food engineering to have a broader science base which includes biophysical, biochemical and health sciences, in addition to engineering sciences. This definition, in turn, leads to the discipline acquiring a new set of subject-knowledge competencies that is fit-for-purpose for this day and age, and hopefully for the foreseeable future. The possibility of this approach leading to the development of a higher education program in food engineering is demonstrated by adopting a theme based curriculum development with five core themes, supplemented by appropriate enabling and knowledge integrating courses. At the heart of this theme based approach is an attempt to combine engineering of process and product in a purposeful way, termed here as Food Product Realisation Engineering. Finally, the paper also recommends future development of two possible niche specialisation programs in Nutrition and Functional Food Engineering and Gastronomic Engineering. It is hoped that this reconceptualization of the discipline will not only make it more purposeful for the food industry, but it will also make the subject more intellectually challenging and attract bright young minds to the discipline.
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.
Resumo:
Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.
Resumo:
Document engineering is the computer science discipline that investigates systems for documents in any form and in all media. As with the relationship between software engineering and software, document engineering is concerned with principles, tools and processes that improve our ability to create, manage, and maintain documents (http://www.documentengineering.org). The ACM Symposium on Document Engineering is an annual meeting of researchers active in document engineering: it is sponsored by ACM by means of the ACM SIGWEB Special Interest Group. In this editorial, we first point to work carried out in the context of document engineering, which are directly related to multimedia tools and applications. We conclude with a summary of the papers presented in this special issue.
Resumo:
Point placement strategies aim at mapping data points represented in higher dimensions to bi-dimensional spaces and are frequently used to visualize relationships amongst data instances. They have been valuable tools for analysis and exploration of data sets of various kinds. Many conventional techniques, however, do not behave well when the number of dimensions is high, such as in the case of documents collections. Later approaches handle that shortcoming, but may cause too much clutter to allow flexible exploration to take place. In this work we present a novel hierarchical point placement technique that is capable of dealing with these problems. While good grouping and separation of data with high similarity is maintained without increasing computation cost, its hierarchical structure lends itself both to exploration in various levels of detail and to handling data in subsets, improving analysis capability and also allowing manipulation of larger data sets.
Resumo:
The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.
Resumo:
Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthogonality, alignment and adaptivity; however, they cannot make subjective design decisions. There are a few quad meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here, we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a flexible mechanism to allow external input, through the definition of alignment features that are respected during the mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface features. Published by Elsevier Ltd.
Resumo:
Public genealogical databases are becoming increasingly populated with historical data and records of the current population`s ancestors. As this increasing amount of available information is used to link individuals to their ancestors, the resulting trees become deeper and more dense, which justifies the need for using organized, space-efficient layouts to display the data. Existing layouts are often only able to show a small subset of the data at a time. As a result, it is easy to become lost when navigating through the data or to lose sight of the overall tree structure. On the contrary, leaving space for unknown ancestors allows one to better understand the tree`s structure, but leaving this space becomes expensive and allows fewer generations to be displayed at a time. In this work, we propose that the H-tree based layout be used in genealogical software to display ancestral trees. We will show that this layout presents an increase in the number of displayable generations, provides a nicely arranged, symmetrical, intuitive and organized fractal structure, increases the user`s ability to understand and navigate through the data, and accounts for the visualization requirements necessary for displaying such trees. Finally, user-study results indicate potential for user acceptance of the new layout.
Resumo:
Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.
Resumo:
Moving-least-squares (MLS) surfaces undergoing large deformations need periodic regeneration of the point set (point-set resampling) so as to keep the point-set density quasi-uniform. Previous work by the authors dealt with algebraic MLS surfaces, and proposed a resampling strategy based on defining the new points at the intersections of the MLS surface with a suitable set of rays. That strategy has very low memory requirements and is easy to parallelize. In this article new resampling strategies with reduced CPU-time cost are explored. The basic idea is to choose as set of rays the lines of a regular, Cartesian grid, and to fully exploit this grid: as data structure for search queries, as spatial structure for traversing the surface in a continuation-like algorithm, and also as approximation grid for an interpolated version of the MLS surface. It is shown that in this way a very simple and compact resampling technique is obtained, which cuts the resampling cost by half with affordable memory requirements.
Resumo:
Visual representations of isosurfaces are ubiquitous in the scientific and engineering literature. In this paper, we present techniques to assess the behavior of isosurface extraction codes. Where applicable, these techniques allow us to distinguish whether anomalies in isosurface features can be attributed to the underlying physical process or to artifacts from the extraction process. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. More concretely, we derive formulas for the expected order of accuracy (or convergence rate) of several isosurface features, and compare them to experimentally observed results in the selected codes. This technique is practical: in two cases, it exposed actual problems in implementations. We provide the reader with the range of responses they can expect to encounter with isosurface techniques, both under ""normal operating conditions"" and also under adverse conditions. Armed with this information - the results of the verification process - practitioners can judiciously select the isosurface extraction technique appropriate for their problem of interest, and have confidence in its behavior.
Resumo:
Reusable and evolvable Software Engineering Environments (SEES) are essential to software production and have increasingly become a need. In another perspective, software architectures and reference architectures have played a significant role in determining the success of software systems. In this paper we present a reference architecture for SEEs, named RefASSET, which is based on concepts coming from the aspect-oriented approach. This architecture is specialized to the software testing domain and the development of tools for that domain is discussed. This and other case studies have pointed out that the use of aspects in RefASSET provides a better Separation of Concerns, resulting in reusable and evolvable SEEs. (C) 2011 Elsevier Inc. All rights reserved.