918 resultados para eXtensible Catalog
Resumo:
This book presents important research advances in the study of teaching and teacher research as well as a review of motivation in education; mentoring; an evaluation of online learning; educational change and computer-assisted teaching.
Resumo:
The open source juggernaut seems to be gaining pace. The open source model certainly has appeal - cutting costs, while at the same time potentially increasing staff and system efficiencies. However, open source poses a number of significant legal challenges and risks for those that incorporate it. Clients need to look carefully before leaping.
Resumo:
This chapter sets out the debates about the changing role of audiences in relation to user-created content as they appear in New Media and Cultural Studies. The discussion moves beyond the simple dichotomies between active producers and passive audiences, and draws on empirical evidence, in order to examine those practices that are most ordinary and widespread. Building on the knowledge of television’s role in facilitating public life, and the everyday, affective practices through which it is experienced and used, I focus on the way in which YouTube operates as a site of community, creativity and cultural citizenship; and as an archive of popular cultural memory.
Resumo:
Introduction: There are many low intensity (LI) cognitive behavoural therapy (CBT) solutions to the problem of limited service access. In this chapter, we aim to discuss a relatively low-technology approach to access using standard postal services-CBT by mail, or M-CBT. Bibliotherapies including M-CBT teach key concepts and self-management techniques, together with screening tools and forms to structure home practice. M-CBT differs from other bibliotherapies by segmenting interventions and mailing them at regular intervals. Most involve participants returning copies of monitoring forms or completed handouts. Therapist feedback is provided, often in personal letters that accompany the printed materials. Participants may also be given access to telephone or email support. ----- ----- M-CBT clearly fulfills criteria for an LI CBT (see Bennett-Levy et al., Chapter 1, for a definition of LI interventions). Once written, they involve little therapist time and rely heavily on self-management. However, content and overall treatment duration need not be compromised. Long-term interventions with multiple components can be delivered via this method, provided their content can be communicated in letters and engagement is maintained.
Resumo:
In a previous chapter (Dean and Kavanagh, Chapter 37), the authors made a case for applying low intensity (LI) cognitive behaviour therapy (CBT) to people with serious mental illness (SMI). As in other populations, LI CBT interventions typically deal with circumscribed problems or behaviours. LI CBT retains an emphasis on self-management, has restricted content and segment length, and does not necessarily require extensive CBT training. In applying these interventions to SMI, adjustments may be needed to address cognitive and symptomatic difficulties often faced by these groups. What may take a single session in a less affected population may require several sessions or a thematic application of the strategy within case management. In some cases, the LI CBT may begin to appear more like a high-intensity (HI) intervention, albeit simple and with many LI CBT characteristics still retained. So, if goal setting were introduced in one or two sessions, it could clearly be seen as an LI intervention. When applied to several different situations and across many sessions, it may be indistinguishable from a simple HI treatment, even if it retains the same format and is effectively applied by a practitioner with limited CBT training. ----- ----- In some ways, LI CBT should be well suited to case management of patients with SMI. treating staff typically have heavy workloads, and find it difficult to apply time-consuming treatments (Singh et al. 2003). LI CBT may allow provision of support to greater numbers of service users, and allow staff to spend more time on those who need intensive and sustained support. However, the introduction of any change in practice has to address significant challenges, and LI CBT is no exception. ----- ----- Many of the issues that we face in applying LI CBT to routine case management in a mnetal health service and their potential solutions are essentially the same as in a range of other problem domains (Turner and Sanders 2006)- and, indeed, are similar to those in any adoption of innovation (Rogers 2003). Over the last 20 years, several commentators have described barriers to implementing evidence-based innovations in mental health services (Corrigan et al. 1992; Deane et al. 2006; Kavanagh et al. 1993). The aim of the current chapter is to present a cognitive behavioural conceptualisation of problems and potential solutions for dissemination of LI CBT.
Resumo:
Many people with severe mental illness (SMI) such as schizophrenia, whose psychotic symptoms are effectively managed, continue to experience significant functional problems. This chapter argues that low intensity (LI) cognitive behaviour therapy (CBT; e.g. for depression, anxiety, or other issues) is applicable to these clients, and that LI CBT can be consistent with long-term case management. However, adjustments to LI CBT strategies are often necessary and boundaries between LI CBT and high intensity (HI) CBT (with more extensive practitioner contact and complexity) may become blurred. Our focus is on LI CBT's self-management emphasis, its restricted content and segment length, and potential use after limited training. In addition to exploring these issues, it draws on the authors' Collaborative Recovery (CR; Oades et al. 2005) and 'Start Over and Survive' programs (Kavanagh et al. 2004) as examples. ----- ----- Evidence for the effectiveness of LI CBT with severe mental illness is often embedded within multicomponent programs. For example, goal setting and therapeutic homework are common components of such programs, but they can also be used as discrete LI CBT interventions. A review of 40 randomised controlled trials involving recipients with schizophrenia or other sever mental illnesses has identified key components of illness management programs (Mueser et al. 2002). However, it is relatively rare for specific components of these complex interventions to be assessed in isolation. Given these constraints, the evidence for specific LI CBT interventions with severe mental ilnness is relatively limited.
Resumo:
Motivational interviewing (MI)can be applied as a brief, low intensity (LI) intervention of 1-4 individualised sessions (typically 45-60 minutes in duration), including screening, assessment feedback, and psycho-education. MI is a client-centred, directive therapeutic style that enhances readiness for change by helping clients explore and resolve ambivalence (Miller and Rollnick 2002). A summary of the key components of brief MI interventions is provided in Table 16.1. There is a well-established evidence base for MI in the treatment of substance misuse (particularly alcohol misuse; Moyer et al. 2002), as well as a growing evidence for the use of MI in the treatment of other mental disorders (e.g. depression, PTSD, OCD), as well as suicidality and physical health problems (Hettema et al. 2005). Brief MI intervention can be delivered as a standalone treatment or as a motivational prelude to pharmacological and/or other psychological treatments (Hettema et al. 2005). MI has been used as an accompaniment to cognitive behavioural therapy (CBT) in the treatment of both depression and anxiety for resolving ambivalence about change and developing strategies for responding to resistance (e.g. treatment attendance, homework/medication compliance; Arkowitz et al. 2008a, 2008b). This chapter will describe how to apply brief MI interventions to the treatment of depression and anxiety as applied to the case of Megan (see Box 16.1) along with some of the challenges and potential solutions to applying MI in practice.
Resumo:
Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
Immediate indefeasibility has been adopted in Australia for close to 40 years. Recently however, and against the backdrop of economic fragility and global deregulation, there has been a polite questioning of its place. In Australia, some may argue that case law developments and legislative reform have placed indefeasibility under the microscope — in New Zealand, a similar telescoping by the respected views of their Law Commission. This note examines these reforms. It concludes that these reforms do not place immediate indefeasibility under threat. Rather, they modify and adapt the doctrine to fit within the context of contemporary financial instruments. Nevertheless, changes have so far been piecemeal, and its time for a consistent and logical examination of this issue to occur on the national, rather than the stage of each state.
Resumo:
Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.
Resumo:
This review collects and summarises the biological applications of the element cobalt. Small amounts of the ferromagnetic metal can be found in rock, soil, plants and animals, but is mainly obtained as a by-product of nickel and copper mining, and is separated from the ores (mainly cobaltite, erythrite, glaucodot and skutterudite) using a variety of methods. Compounds of cobalt include several oxides, including: green cobalt(II) (CoO), blue cobalt(II,III) (Co3O4), and black cobalt(III) (Co2O3); four halides including pink cobalt(II) fluoride (CoF2), blue cobalt(II) chloride (CoCl2), green cobalt(II) bromide (CoBr2), and blue-black cobalt(II) iodide (CoI2). The main application of cobalt is in its metal form in cobalt-based super alloys, though other uses include lithium cobalt oxide batteries, chemical reaction catalyst, pigments and colouring, and radioisotopes in medicine. It is known to mimic hypoxia on the cellular level by stabilizing the α subunit of hypoxia inducing factor (HIF), when chemically applied as cobalt chloride (CoCl2). This is seen in many biological research applications, where it has shown to promote angiogenesis, erythropoiesis and anaerobic metabolism through the transcriptional activation of genes such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), contributing significantly to the pathophysiology of major categories of disease, such as myocardial, renal and cerebral ischaemia, high altitude related maladies and bone defects. As a necessary constituent for the formation of vitamin B12, it is essential to all animals, including humans, however excessive exposure can lead to tissue and cellular toxicity. Cobalt has been shown to provide promising potential in clinical applications, however further studies are necessary to clarify its role in hypoxia-responsive genes and the applications of cobalt-chloride treated tissues.
Resumo:
Stem cells are unprogrammed cells which possess plasticity and self renewal capability. The term of stem cell was first used to describe cells committed to give rise to germline cells, and to describe proposed progenitor cells of the blood system [1]. A unique feature of stem cell is to remain quiescent in vivo in an uncommitted state. They serve as reservoir or natural support system to replenish cells lost due to disease, injury or aging. When triggered by appropriate signals these cells divide and may become specialized, committed cells; however being able to control this differentiation process still remains one of the biggest challenge in stem cell research [2]. The cell division of stem cells is a distinct aspect of their biology, since this division may be either symmetric or asymmetric. Symmetric division takes place when the stem cells divides and forms two new daughter cells. Asymmetric division is thought to take place only under certain conditions where stem cells divides and gives rise to a daughter cell which remains primitive and does not proliferate, and one committed progenitor cell, which heads down a path of differentiation. Asymmetric division of stem cells helps reparative process, and also ensures that the stem cells pool does not decrease, whereas symmetric division is responsible for stem cells undergoing self renewal and proliferation. The factors which prompt the stem cells to undergo asymmetric division are, however, not well understood, but it is clear that the delicate balance between the self renewal and differentiation is what maintains tissue homeostasis.
Resumo:
Osteoarthritis (OA) is a chronic, non-inflammatory type of arthritis, which usually affects the movable and weight bearing joints of the body. It is the most common joint disease in human beings and common in elderly people. Till date, there are no safe and effective diseases modifying OA drugs (DMOADs) to treat the millions of patients suffering from this serious and debilitating disease. However, recent studies provide strong evidence for the use of mesenchymal stem cell (MSC) therapy in curing cartilage related disorders. Due to their natural differentiation properties, MSCs can serve as vehicles for the delivery of effective, targeted treatment to damaged cartilage in OA disease. In vitro, MSCs can readily be tailored with transgenes with anti-catabolic or pro-anabolic effects to create cartilage-friendly therapeutic vehicles. On the other hand, tissue engineering constructs with scaffolds and biomaterials holds promising biological cartilage therapy. Many of these strategies have been validated in a wide range of in vitro and in vivo studies assessing treatment feasibility or efficacy. In this review, we provide an outline of the rationale and status of stem-cell-based treatments for OA cartilage, and we discuss prospects for clinical implementation and the factors crucial for maintaining the drive towards this goal.
Resumo:
The ultimate goal of periodontal therapy is to regenerate periodontal supporting tissues, but this is hard to achieve as the results of periodontal techniques for regeneration are clinically unpredictable. Stem cells owing to their plasticity and proliferation potential provides a new paradigm for periodontal regeneration. Stem cells from mesenchyme can self renew and generate new dental tissues (including dentin and cementum), alveolar bone and periodontal ligament, and thus they have great potential in periodontal regeneration. This chapter presents an insight into mesenchymal stem cells and their potential use in periodontal regeneration. In this chapter the cellular and molecular biology in periodontal regeneration will be introduced, followed by a range of conventional surgical procedures for periodontal regeneration will be discussed. Mesenchymal stem cells applied in regenerated periodontal tissue and their biological characterizations in vitro will be also introduced. Lastly, the use of mesenchymal stem cell to repair periodontal tissues in large animal models will be also reviewed.