955 resultados para collaborative intrusion detection
Resumo:
This paper provides a new general approach for defining coherent generators in power systems based on the coherency in low frequency inter-area modes. The disturbance is considered to be distributed in the network by applying random load changes which is the random walk representation of real loads instead of a single fault and coherent generators are obtained by spectrum analysis of the generators velocity variations. In order to find the coherent areas and their borders in the inter-connected networks, non-generating buses are assigned to each group of coherent generator using similar coherency detection techniques. The method is evaluated on two test systems and coherent generators and areas are obtained for different operating points to provide a more accurate grouping approach which is valid across a range of realistic operating points of the system.
Resumo:
Dynamic capability theory asserts that the learning capabilities of construction organisations influence the degree to which value-for-money (VfM) is achieved on collaborative projects. However, there has been little study conducted to verify this relationship. The evidence is particularly limited within the empirical context of infrastructure delivery in Australia. Primarily drawing on the theoretical perspectives of the resource-based view of the firm (e.g. Barney 1991), dynamic capabilities (e.g. Helfat et al. 2007), absorptive capacity (e.g. Lane et al. 2006) and knowledge management (e.g. Nonaka 1994), this paper conceptualises learning capability as a knowledge-based dynamic capability. Learning capability builds on the micro-foundations of high-order learning routines, which are deliberately developed by construction organisations for managing collaborative projects. Based on this conceptualisation of learning capability, an exploratory case study was conducted. The study investigated the operational and higher-order learning routines adopted by a project alliance team to successfully achieve VfM. The case study demonstrated that the learning routines of the alliance project were developed and modified by the continual joint learning activities of participant organisations. Project-level learning routines were found to significantly influence the development of organisational-level learning routines. In turn, the learning outcomes generated from the alliance project appeared to significantly influence the development of project management routines and contractual arrangements applied by the participant organisations in subsequent collaborative projects. The case study findings imply that the higher-order learning routines that underpin the learning capability of construction organisations have the potential to influence the VfM achieved on both current and future collaborative projects.
Resumo:
Phylogenetic inference from sequences can be misled by both sampling (stochastic) error and systematic error (nonhistorical signals where reality differs from our simplified models). A recent study of eight yeast species using 106 concatenated genes from complete genomes showed that even small internal edges of a tree received 100% bootstrap support. This effective negation of stochastic error from large data sets is important, but longer sequences exacerbate the potential for biases (systematic error) to be positively misleading. Indeed, when we analyzed the same data set using minimum evolution optimality criteria, an alternative tree received 100% bootstrap support. We identified a compositional bias as responsible for this inconsistency and showed that it is reduced effectively by coding the nucleotides as purines and pyrimidines (RY-coding), reinforcing the original tree. Thus, a comprehensive exploration of potential systematic biases is still required, even though genome-scale data sets greatly reduce sampling error.
Resumo:
Purpose – The article aims to review a university course, offered to students in both Australia and Germany, to encourage them to learn about designing, implementing, marketing and evaluating information programs and services in order to build active and engaged communities. The concepts and processes of Web 2.0 technologies come together in the learning activities, with students establishing their own personal learning networks (PLNs). Design/methodology/approach – The case study examines the principles of learning and teaching that underpin the course and presents the students' own experiences of the challenges they faced as they explored the interactive, participative and collaborative dimensions of the web. Findings – The online format of the course and the philosophy of learning through play provided students with a safe and supportive environment for them to move outside of their comfort zones, to be creative, to experiment and to develop their professional personas. Reflection on learning was a key component that stressed the value of reflective practice in assisting library and information science (LIS) professionals to adapt confidently to the rapidly changing work environment. Originality/value – This study provides insights into the opportunities for LIS courses to work across geographical boundaries, to allow students to critically appraise library practice in different contexts and to become active participants in wider professional networks.
Resumo:
This paper presents a study whereby a series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine fitted with a piston having an undersized skirt. This experimental simulation resulted in engine running conditions that included abnormally high levels of piston slap occurring in one of the cylinders. The detectability of the resultant Diesel engine piston slap was investigated using acoustic emission signals. Data corresponding to both normal and piston slap engine running conditions was captured using acoustic emission transducers along with both; in-cylinder pressure and top-dead centre reference signals. Using these signals it was possible to demonstrate that the increased piston slap running conditions were distinguishable by monitoring the piston slap events occurring near the piston mid-stroke positions. However, when monitoring the piston slap events occurring near the TDC/BDC piston stroke positions, the normal and excessive piston slap engine running condition were not clearly distinguishable.
Resumo:
We examine which capabilities technologies provide to support collaborative process modeling. We develop a model that explains how technology capabilities impact cognitive group processes, and how they lead to improved modeling outcomes and positive technology beliefs. We test this model through a free simulation experiment of collaborative process modelers structured around a set of modeling tasks. With our study, we provide an understanding of the process of collaborative process modeling, and detail implications for research and guidelines for the practical design of collaborative process modeling.
Resumo:
Quantitative imaging methods to analyze cell migration assays are not standardized. Here we present a suite of two–dimensional barrier assays describing the collective spreading of an initially–confined population of 3T3 fibroblast cells. To quantify the motility rate we apply two different automatic image detection methods to locate the position of the leading edge of the spreading population after 24, 48 and 72 hours. These results are compared with a manual edge detection method where we systematically vary the detection threshold. Our results indicate that the observed spreading rates are very sensitive to the choice of image analysis tools and we show that a standard measure of cell migration can vary by as much as 25% for the same experimental images depending on the details of the image analysis tools. Our results imply that it is very difficult, if not impossible, to meaningfully compare previously published measures of cell migration since previous results have been obtained using different image analysis techniques and the details of these techniques are not always reported. Using a mathematical model, we provide a physical interpretation of our edge detection results. The physical interpretation is important since edge detection algorithms alone do not specify any physical measure, or physical definition, of the leading edge of the spreading population. Our modeling indicates that variations in the image threshold parameter correspond to a consistent variation in the local cell density. This means that varying the threshold parameter is equivalent to varying the location of the leading edge in the range of approximately 1–5% of the maximum cell density.
Resumo:
Video presented as part of AMCIS 2010 conference in Lima Peru. New improved collaborative BPMN editor video, showing a new interface and collaboration capabilities via remote login of another avatar.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. This video outlines a collaborative BPMN editing system, developed by Stephen West, an IT Research Masters student at QUT, Brisbane, Australia. The editor uses a number of tools to facilitate collaborative process modelling, including a presentation wall, to view text descriptions of business processes, and a tile-based BPMN editor. We will post a video soon focussing on the multi-user capabilities of this editor. For more details see www.bpmve.org.
Resumo:
Situated on Youtube, and shown in various locations. A video showing members of the QUT BPM research group using a Mimio pen-based tabletop system for collaborative process modelling.
Resumo:
Monitoring fetal wellbeing is a compelling problem in modern obstetrics. Clinicians have become increasingly aware of the link between fetal activity (movement), well-being, and later developmental outcome. We have recently developed an ambulatory accelerometer-based fetal activity monitor (AFAM) to record 24-hour fetal movement. Using this system, we aim at developing signal processing methods to automatically detect and quantitatively characterize fetal movements. The first step in this direction is to test the performance of the accelerometer in detecting fetal movement against real-time ultrasound imaging (taken as the gold standard). This paper reports first results of this performance analysis.
Resumo:
This paper presents an alternative approach to image segmentation by using the spatial distribution of edge pixels as opposed to pixel intensities. The segmentation is achieved by a multi-layered approach and is intended to find suitable landing areas for an aircraft emergency landing. We combine standard techniques (edge detectors) with novel developed algorithms (line expansion and geometry test) to design an original segmentation algorithm. Our approach removes the dependency on environmental factors that traditionally influence lighting conditions, which in turn have negative impact on pixel-based segmentation techniques. We present test outcomes on realistic visual data collected from an aircraft, reporting on preliminary feedback about the performance of the detection. We demonstrate consistent performances over 97% detection rate.
Resumo:
Traditional craft industries need assistance with being transformed into creative industries; as such a transformation will support them to face the future competitive global market. Assistance such as advisory programs should serve long-term benefit for crafts industries as well as optimize self-help potential. Advisory programs using participatory methods will enable craftspeople and stakeholders to reveal resources and potencies, such as socio-cultural value, tradition and other kind of heritages, to generate new innovative ideas of craft design in a sustainable way.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.