935 resultados para automatic summarization
Resumo:
A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.
Resumo:
Quality assessment is a key factor for stereoscopic 3D video content as some observers are affected by visual discomfort in the eye when viewing 3D video, especially when combining positive and negative parallax with fast motion. In this paper, we propose techniques to assess objective quality related to motion and depth maps, which facilitate depth perception analysis. Subjective tests were carried out in order to understand the source of the problem. Motion is an important feature affecting 3D experience but also often the cause of visual discomfort. The automatic algorithm developed tries to quantify the impact on viewer experience when common cases of discomfort occur, such as high-motion sequences, scene changes with abrupt parallax changes, or complete absence of stereoscopy, with a goal of preventing the viewer from having a bad stereoscopic experience.
Resumo:
Automatic grading of programming assignments is an important topic in academic research. It aims at improving the level of feedback given to students and optimizing the professor time. Several researches have reported the development of software tools to support this process. Then, it is helpfulto get a quickly and good sight about their key features. This paper reviews an ample set of tools forautomatic grading of programming assignments. They are divided in those most important mature tools, which have remarkable features; and those built recently, with new features. The review includes the definition and description of key features e.g. supported languages, used technology, infrastructure, etc. The two kinds of tools allow making a temporal comparative analysis. This analysis infrastructure, etc. The two kinds of tools allow making a temporal comparative analysis. This analysis shows good improvements in this research field, these include security, more language support, plagiarism detection, etc. On the other hand, the lack of a grading model for assignments is identified as an important gap in the reviewed tools. Thus, a characterization of evaluation metrics to grade programming assignments is provided as first step to get a model. Finally new paths in this research field are proposed.
Resumo:
The installers and owners show a growing interest in the follow-up of the performance of their photovoltaic (PV) systems. The owners are requesting reliable sources of information to ensure that their system is functioning properly, and the installers are actively looking for efficient ways of providing them the most useful possible information from the data available. Policy makers are becoming increasingly interested in the knowledge of the real performance of PV systems and the most frequent sources of problems that they suffer to be able to target the identified challenges properly. The scientific and industrial PV community is also requiring an access to massive operational data to pursue the technological improvements further.
Resumo:
The number and grade of injured neuroanatomic structures and the type of injury determine the degree of impairment after a brain injury event and the recovery options of the patient. However, the body of knowledge and clinical intervention guides are basically focused on functional disorder and they still do not take into account the location of injuries. The prognostic value of location information is not known in detail either. This paper proposes a feature-based detection algorithm, named Neuroanatomic-Based Detection Algorithm (NBDA), based on SURF (Speeded Up Robust Feature) to label anatomical brain structures on cortical and sub-cortical areas. Themain goal is to register injured neuroanatomic structures to generate a database containing patient?s structural impairment profile. This kind of information permits to establish a relation with functional disorders and the prognostic evolution during neurorehabilitation procedures.
Resumo:
Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.
Resumo:
We demonstrate generating complete and playable card games using evolutionary algorithms. Card games are represented in a previously devised card game description language, a context-free grammar. The syntax of this language allows us to use grammar-guided genetic programming. Candidate card games are evaluated through a cascading evaluation function, a multi-step process where games with undesired properties are progressively weeded out. Three representa- tive examples of generated games are analysed. We observed that these games are reasonably balanced and have skill ele- ments, they are not yet entertaining for human players. The particular shortcomings of the examples are discussed in re- gard to the generative process to be able to generate quality games
Resumo:
The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.
Resumo:
Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.
Resumo:
Automatic Control Teaching in the new degree syllabus has reduced both, its contents and its implementation course, with regard to traditional engineering careers. On the other hand, where the qualification is not considered as automatic control specialist, it is required an adapted methodology to provide the minimum contents that the student needs to assimilate, even in the case that students do not perceive these contents as the most important in their future career. In this paper we present the contents of a small automatic course taught Naval Architecture and Marine Engineering Degrees at the School of Naval Engineering of the Polytechnic University of Madrid. We have included the contents covered using the proposed methodology which is based on practical work after lectures. Firstly, the students performed exercises by hand. Secondly, they solve the exercises using informatics support tools, and finally, they validate their previous results and their knowledge in the laboratory platforms.
Resumo:
We propose a new method to automatically refine a facial disparity map obtained with standard cameras and under conventional illumination conditions by using a smart combination of traditional computer vision and 3D graphics techniques. Our system inputs two stereo images acquired with standard (calibrated) cameras and uses dense disparity estimation strategies to obtain a coarse initial disparity map, and SIFT to detect and match several feature points in the subjects face. We then use these points as anchors to modify the disparity in the facial area by building a Delaunay triangulation of their convex hull and interpolating their disparity values inside each triangle. We thus obtain a refined disparity map providing a much more accurate representation of the the subjects facial features. This refined facial disparity map may be easily transformed, through the camera calibration parameters, into a depth map to be used, also automatically, to improve the facial mesh of a 3D avatar to match the subjects real human features.
Resumo:
This paper describes a knowledge model for a configuration problem in the do-main of traffic control. The goal of this model is to help traffic engineers in the dynamic selection of a set of messages to be presented to drivers on variable message signals. This selection is done in a real-time context using data recorded by traffic detectors on motorways. The system follows an advanced knowledge-based solution that implements two abstract problem solving methods according to a model-based approach recently proposed in the knowledge engineering field. Finally, the paper presents a discussion about the advantages and drawbacks found for this problem as a consequence of the applied knowledge modeling ap-proach.
Resumo:
This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under image perspective projection. Because of the above undesired effects, most often, the estimation results inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge which is mapped into two modules based on image processing techniques. The first one is intended for separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based on the system geometry where the expected crop lines are mapped onto the image and then a correction is applied through the well-tested and robust Theil–Sen estimator in order to adjust them to the real ones. Its performance is favorably compared against the classical Pearson product–moment correlation coefficient.
Resumo:
In this study, we present a framework based on ant colony optimization (ACO) for tackling combinatorial problems. ACO algorithms have been applied to many diferent problems, focusing on algorithmic variants that obtain high-quality solutions. Usually, the implementations are re-done for various problem even if they maintain the same details of the ACO algorithm. However, our goal is to generate a sustainable framework for applications on permutation problems. We concentrate on understanding the behavior of pheromone trails and specific methods that can be combined. Eventually, we will propose an automatic offline configuration tool to build an efective algorithm. ---RESUMEN---En este trabajo vamos a presentar un framework basado en la familia de algoritmos ant colony optimization (ACO), los cuales están dise~nados para enfrentarse a problemas combinacionales. Los algoritmos ACO han sido aplicados a diversos problemas, centrándose los investigadores en diversas variantes que obtienen buenas soluciones. Normalmente, las implementaciones se tienen que rehacer, inclusos si se mantienen los mismos detalles para los algoritmos ACO. Sin embargo, nuestro objetivo es generar un framework sostenible para aplicaciones sobre problemas de permutaciones. Nos centraremos en comprender el comportamiento de la sendas de feromonas y ciertos métodos con los que pueden ser combinados. Finalmente, propondremos una herramienta para la configuraron automática offline para construir algoritmos eficientes.
Resumo:
The deformation and damage mechanisms of carbon fiber-reinforced epoxy laminates deformed in shear were studied by means of X-ray computed tomography. In particular, the evolution of matrix cracking, interply delamination and fiber rotation was ascertained as a function of the applied strain. In order to provide quantitative information, an algorithm was developed to automatically determine the crack density and the fiber orientation from the tomograms. The investigation provided new insights about the complex interaction between the different damage mechanisms (i.e. matrix cracking and interply delamination) as a function of the applied strain, ply thickness and ply location within the laminate as well as quantitative data about the evolution of matrix cracking and fiber rotation during deformation