947 resultados para anionic contaminants
Resumo:
Anionic collagen: calcium phosphate composite was obtained by controlled mixing of collagen and calcium phosphate until the consistence of a past. Material was characterized by a Ca/P ratio of 1.55, with a X-ray diffraction pattern similar to that for hydroxyapatite. Differential Scanning Calorimetry showed that the protein is not denatured under the processing conditions. Scanning Electronic Microscopy showed that the mineral phase are regularly covered with collagen fibers, indicating that anionic collagen is efficient in the preparation of stable form of calcium phosphate ceramic paste.
Resumo:
This work describes the techniques of construction and several applications of ultramicroelectrodes in electrochemistry and electroanalytical chemistry. Disc shaped UME are produced by embedding metal wires on insulating materials such as glass or epoxy resin. In the field of electrochemistry, UME have been applied in studies of the hydrogen evolution reaction and the electrocrystallization of metals. The negligible values of sensibility for ohmic drop and the enhanced mass transport rate by spherical diffusion are the main advantages of UME in these applications. New important conclusions regarding the phenomena under study were drawn from the experimental results. The applications in electroanalytical chemistry involved the determination of contaminants such as heavy metals and nitrites in natural waters and food products. The use of UME requires little sample manipulation and, in general, no need for oxygen removal or the addition of supporting electrolytes.
Resumo:
Alumina supported niobium oxide was prepared by chemical vapor deposition (CVD) of NbCl5. The alumina was calcined and pretreated at differents temperatures in order to vary the density of OH groups on the surface which was determined by thermogravimetric analysis. A good correlation was found between the amount of anchored niobium and the total number of anionic sites (oxide and hydroxyl groups) on the surface of the alumina. The infrared spectra on the OH stretching region indicate that OH groups coordinated to at least one tetrahedral aluminum were more reactive towards NbCl5.
Resumo:
This work describes the selective hydrolysis of carboxyamide groups of asparagine and glutamine of collagen matrices for the preparation of negatively charged collagen biomaterials. The reaction was performed in the presence of chloride and sulfate salts of alkaline and alkaline earth metals in aqueous dimethylsulfoxide solution and, selectively hydrolysis of carboxyamide groups of collagen matrices was promoted without cleavage of the peptide bond. The result is a new collagen material with controlled increase in negative charge content. Although triple helix secondary structure of tropocollagen was preserved, significative changes in thermal stabilities were observed in association with a new pattern of tropocollagen macromolecular association, particularly in respect microfibril assembly, thus providing at physiological pH a new type of collagen structure for biomaterial preparation, characterized by different charge and structural contents .
Resumo:
The layered double hydroxides, known as anionic clays and represented by the general formula [M2+1-x M3+x (OH) 2]x+ Am-x/m·nH 2O, are a group of materials which are of much interest currently. They present a variety of potential applications as adsorbents, catalysts and catalyst support, ion-exchangers, antacids and as a polymer stabilizer. It is possible to obtain a broad variety of layered double hydroxides (LDHs), depending on the identity and ratio of the cations M2+ and M3+, as well as the interlamelar anion. The aim of this review is to give out some information about this class of materials, concerning to the synthesis, characterization, properties and applications.
Resumo:
The multi-element determination of Al, Cr, Mn, Ni, Cu, Zn, Cd, Ba, Pb, SO4= and Cl- in riverine water samples was accomplished by inductively coupled plasma mass spectrometry (ICP-MS). The sample passed through a column containing the anionic resin AG1-X8 and the metals were determined directly. The retained anionic species were eluted and SO4= and Cl- were determined at m/z 48 and 35 correspondent to the ions SO+ and Cl+ formed at the plasma. Accuracy for metals was assessed by analysing the certified reference TM-26 (National Water Research Institute of Canada). Results for SO4= and Cl- were in agreement with those obtained by turbidimetry and spectrophotometry. LOD's of 0.1 µg l-1 for Cd, Ba and Pb; 0.2 µg l-1 for Al, Mn and Cu; 0.5 µg l-1 for Cr; 0.9 for Zn; 2.0 µg l-1for Ni , 60 µg l-1 for S and 200 µg l-1 Cl were attained.
Resumo:
The input of heavy metals concentrations determinated by ICP-AES, in samples of the Cambé river basin, was evaluated by using the Principal Component Analysis. The results distinguishes clearly one site, which is strongly influenced by almost all elements studied. Special attention was given to Pb, because of the presence of one battery industry in this area. Some downstream samples were associated with the same characteristics of this site, showing residual action of contaminants along the basin. Other sites presented influence of soil elements, plus Cr near a tannery industry. This study allowed to distinguish different sites in the upper basin of the Cambé (Londrina-PR-BR), in accordance to elements input.
Resumo:
Työn tarkoituksena oli laatia suunnitelma ilmaan johdettavien epäpuhtauksien päästökartoitukselle Porvoon öljynjalostamolla. Raskasmetallien, metaanin, fluorivetyhapon, rikkivedyn ja ammoniakin merkittävät päästöpaikat ja -tarkkailumenetelmät kartoitettaisiin tulevaa päästöraportointia varten. Tarkkailun alaisten komponenttien muodostuminen, kulkeutuminen ja merkittävät päästöpaikat Porvoon jalostamolla selvitettiin kirjallisuuslähteiden, jalostamon toimintajärjestelmän ohjeiden sekä työntekijöiden haastattelujen perusteella. Merkittäviä häiriöpäästötilanteita kartoitettiin ja arvioitiin jalostamon poikkeamatilastojen ja haastattelujen avulla. Normaalitoiminnan aikana tarkkailun alaisista epäpuhtauksista vapautuu ilmaan merkittäviä määriä ainoastaan metaania ja raskasmetalleja. Metaania vapautuu ilmaan polttoprosesseissa sekä hajapäästönä. Raskasmetallipäästöjä syntyy pohjaöljyn poltossa energialaitoksella sekä leijukatalyyttisessä krakkauksessa. Rikkilaitosten häiriötilanteista aiheutuu rikkivety- ja ammoniakkipäästöjä pääasiassa soihtujärjestelmän kautta. Alkylointiyksikön vuodoissa voi vapautua fluorivetyhappoa ilmaan. Päästömääriä arvioidaan pääosin laskennallisesti. Päästökartoitussuunnitelma on kokonaisuudessaan tämän työn liitteenä. Näyttäisi siltä, että TRS-yhdisteiden, ammoniakin ja fluorivetyhapon ilmapäästöt eivät ole merkittäviä Porvoon öljynjalostamolla. Uuden pohjaöljy-yksikön käyttöönotto on vähentänyt myös raskasmetallipäästöjä energialaitoksella. Metaanipäästö vaikuttaa kartoitukseen sisällytettävistä epäpuhtauksista merkityksellisimmältä Porvoon öljynjalostamolla.
Resumo:
The technique of solid phase microextraction (SPME) was used for the extraction of halogenated contaminants of water samples from three cities of the State of São Paulo and the extracts were submitted to gas chromatographic analysis with electron capture detection (GC-ECD). In the samples of water collected at the city of São Paulo the detected level of trihalomethanes (THM) expressed as the sum of chloroform, dibromochloromethane and dichlorobromomethane, were higher than the permissible limit established by the Brazilian regulation. In the samples collected at the two other cities the level of any of the three THM remained below the sensitivity of the ECD.
Resumo:
The phase diagram formation of microemulsion-based gels composed of an anionic surfactant aerosol-OT sodium bis (2-ethylhexyl)-sulphosuccinate), water, gelatin and an organic solvent is presented for heptane. The stability of this organo- gel, when an enzyme is immobilized is discussed in terms of its reutilization in various esters synthesis.
Resumo:
The objective of the research was to study the influence of temperature, oxygen pressure, catalysts loading and initial COD concentration of debarking wastewater on the pollutants during the catalytic oxidation. More importantly, how the addition of catalyst affects the wet oxidation process. The whole work was divided into two main sections, theoretical and experimental parts. The theoretical part reviews the pulp and paper industry from wood processing to paper production as well as operations that generate wastes. Treatment methods applicable for industrial pulp and paper mill effluents were also discussed. Wet oxidation and catalytic wet oxidation processes including mechanism, reactions, kinetics and industrial applications were previewed. In the experimental part, catalytic wet oxidation process were studied at 120-180°C, 0-10 bar oxygen pressure, 0-1 g/L catalyst concentration and 1000-3000 mg/L initial COD concentration. Responses, such as Chemical oxygen demand (COD), Total organic carbon (TOC), colour, lignin/tannin, Biochemical oxygen demand (BOD) and pH were measured. In the experiment, the best conditions occurred at 180°C, 10 bar, l g/L catalyst concentration and 3000mg/L initial COD. At these conditions; 74% COD, 97% lignin/tannin, 54% TOC, 90% colour were removed from the wastewater. pH was greatly reduced from 7 to 4.6. Lignin/tannin was removed most. Lignin/tannin showed linear dependency with colour during oxidation. Temperature made the most impact in reducing contaminants in debarked wastewater.
Resumo:
Stable isotope fractionation analysis of contaminants is a promising method for assessing biodegradation of contaminants in natural systems. However, standard procedures to determine stable isotope fractionation factors, so far, neglect the influence of pollutant bioavailability on stable isotope fractionation. On a microscale, bioavailability may vary due to the spatio-temporal variability of local contaminant concentrations, limited effective diffusivities of the contaminants and cell densities, and thus, the pollutant supply might not meet the intrinsic degradation capacity of the microorganisms. The aim of this study was to demonstrate the effect of bioavailability on the apparent stable isotope fractionation, using a multiphase laboratory setup. The data gained show that the apparent isotope fractionation factors observed during biodegradation processes depend on the amount of biomass and/or the rate of toluene mass transfer from a second to the aqueous phase. They indicate that physico-chemical processes need to be taken into account when stable isotope fractionation analysis is used for the quantification of environmental contaminant degradation.
Resumo:
The chemistry of cyclopentadiene rings has been widely studied. This review article deals with a similar chemistry of new compounds containing from 1 to 5 phosphorus atoms on the ring substituting the carbon atoms. The neutral rings containing one, two and three phosphorus atoms can be used as building blocks for the synthesis of new organic compounds containing phosphorus. These rings plus the anionic ones also show great potential as ligands in coordination chemistry. The aim of this article is to show how important this new area is and how diverse the chemistry related to a single type of ring can be.
Resumo:
The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional : oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher disperdion when cerium oxide is present.
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.