1000 resultados para action.
Resumo:
.
Resumo:
Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide [GIP]) is an important incretin hormone secreted by endocrine K-cells in response to nutrient ingestion. In this study, we investigated the effects of chemical ablation of GIP receptor (GIP-R) action on aspects of obesity-related diabetes using a stable and specific GIP-R antagonist, (Pro3)GIP. Young adult ob/ob mice received once-daily intraperitoneal injections of saline vehicle or (Pro3)GIP over an 11-day period. Nonfasting plasma glucose levels and the overall glycemic excursion (area under the curve) to a glucose load were significantly reduced (1.6-fold; P <0.05) in (Pro3)GIP-treated mice compared with controls. GIP-R ablation also significantly lowered overall plasma glucose (1.4-fold; P <0.05) and insulin (1.5-fold; P <0.05) responses to feeding. These changes were associated with significantly enhanced (1.6-fold; P <0.05) insulin sensitivity in the (Pro3)GIP-treated group. Daily injection of (Pro3)GIP reduced pancreatic insulin content (1.3-fold; P <0.05) and partially corrected the obesity-related islet hypertrophy and ß-cell hyperplasia of ob/ob mice. These comprehensive beneficial effects of (Pro3)GIP were reversed 9 days after cessation of treatment and were independent of food intake and body weight, which were unchanged. These studies highlight a role for GIP in obesity-related glucose intolerance and emphasize the potential of specific GIP-R antagonists as a new class of drugs for the alleviation of insulin resistance and treatment of type 2 diabetes.
Resumo:
Polymerase chain reaction (PCR) assessment of clonal immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements is an important diagnostic tool in mature B-cell neoplasms. However, lack of standardized PCR protocols resulting in a high level of false negativity has hampered comparability of data in previous clonality studies. In order to address these problems, 22 European laboratories investigated the Ig/TCR rearrangement patterns as well as t(14;18) and t(11;14) translocations of 369 B-cell malignancies belonging to five WHO-defined entities using the standardized BIOMED-2 multiplex PCR tubes accompanied by international pathology panel review. B-cell clonality was detected by combined use of the IGH and IGK multiplex PCR assays in all 260 definitive cases of B-cell chronic lymphocytic leukemia (n¼56), mantle cell lymphoma (n¼54), marginal zone lymphoma (n¼41) and follicular lymphoma (n¼109). Two of 109 cases of diffuse large B-cell lymphoma showed no detectable clonal marker. The use of these techniques to assign cell lineage should be treated with caution as additional clonal TCR gene rearrangements were frequently detected in all disease categories. Our study indicates that the BIOMED-2 multiplex PCR assays provide a powerful strategy for clonality assessment in B-cell malignancies resulting in high Ig clonality detection rates particularly when IGH and IGK strategies are combined.
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Resumo:
We previously showed inhibition of Kir2 inward rectifier K+ channels expressed in Xenopus oocytes by the mitochondrial agents carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and sodium azide. Mutagenesis studies suggested that FCCP may act via phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. This mechanism could be reversible in intact cells but not in excised membrane patches which preclude PIP2 regeneration. This prediction was tested by investigating the reversibility of the inhibition of Kir2.2 by FCCP in intact cells and excised patches. We also investigated the effect of FCCP on Kir2.2 expressed in human embryonic kidney (HEK) cells. Kir2.2 current, expressed in Xenopus oocytes, increased in inside-out patches from FCCP-treated and untreated oocytes. The fraction of total current that increased was 0.79?±?0.05 in control and 0.89?±?0.03 in 10 µM FCCP-treated (P?>?.05). Following “run-up,” Kir2.2 current was re-inhibited by “cramming” inside-out patches into oocytes. Therefore, run-up reflected not reversal of inhibition by FCCP, but washout of an endogenous inhibitor. Kir2.2 current recovered in intact oocytes within 26.5 h of FCCP removal. Injection of oocytes with 0.1 U apyrase completely depleted ATP (P?<?.001) but did not inhibit Kir2.2 and inhibited Kir2.1 by 35% (P?<?.05). FCCP only partially reduced [ATP] (P?<?.001), despite inhibiting Kir2.2 by 75% (P?<?.01) but not Kir2.1. FCCP inhibited Kir2.2 expressed in HEK cells. The recovery of Kir2.2 from inhibition by FCCP requires intracellular components, but direct depletion of ATP does not reproduce the differential inhibitory effect of FCCP. Inhibition of Kir2.2 by FCCP is not unique to Xenopus oocytes. J. Cell. Physiol. 219: 8–13, 2009. © 2008 Wiley-Liss, Inc.
Resumo:
A novel 5-aminolevulinic acid (ALA)-containing microparticulate system was produced recently, based on incorporation of ALA into particles prepared from a suppository base that maintains drug stability during storage and melts at skin temperature to release its drug payload. The novel particulate system was applied to the skin of living animals, followed by study of protoporphyrin IX (PpIX) production. The effect of formulating the microparticles in different vehicles was investigated and also the phototoxicity of the PpIX produced using a model tumour. Particles formulated in propylene glycol gels (10% w/w ALA loading) generated the highest peak PpIX fluorescence levels in normal mouse skin. Peak PpIX levels induced in skin overlying subcutaneously implanted WiDr tumours were significantly lower than in normal skin for both the 10% w/w ALA microparticles alone and the 10% w/w ALA microparticles in propylene glycol gels during continuous 12 h applications. Tumours not treated with photodynamic therapy continued to grow over the 17 days of the anti-tumour study. However, those treated with 12 h applications of either the 10% w/w ALA microparticles alone or the 10% w/w ALA microparticles in propylene glycol gel followed by a single laser irradiation showed no growth. The gel formulation performed slightly better once again, reducing the tumour growth rate by approximately 105%, compared with the 89% reduction achieved using particles alone. Following the promising results obtained in this study, work is now going on to prepare particle-loaded gels under GMP conditions with the aim of initiating an exploratory clinical trial.