979 resultados para X ray spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction measurements and subsequent data analyses have been carried out on liquid argon at five states in the density range of 0.91 to 1.135 gm/cc and temperature range of 127 to 143°K. Duplicate measurements were made on all states. These data yielded radial distribution and direct correlation functions which were then used to compute the pair potential using the Percus-Yevick equation. The potential minima are in the range of -105 to -120°K and appear to substantiate current theoretical estimates of the effective pair potential in the presence of a weak three-body force.

The data analysis procedure used was new and does not distinguish between the coherent and incoherent absorption factors for the cell scattering which were essentially equal. With this simplification, the argon scattering estimate was compared to the gas scattering estimate on the laboratory frame of reference and the two estimates coincided, indicating the data normalized. The argon scattering on the laboratory frame of reference was examined for the existence of the peaks in the structure factor and the existence of an observable third peak was considered doubtful.

Numerical studies of the effect of truncation, normalization, the subsidiary peak phenomenon in the radial distribution function, uncertainties in the low angle data relative to errors in the direct correlation function and the distortion phenomenon are presented.

The distortion phenomenon for this experiment explains why the Mikolaj-Pings argon data yielded pair potential well depths from the Percus-Yevick equation that were too shallow and an apparent slope with respect to density that was too steep compared to theoretical estimates.

The data presented for each measurement are: empty cell and cell plus argon intensity, absorption factors, argon intensity, smoothed argon intensity, smoothed argon intensity corrected for distortion, structure factor, radial distribution function, direct correlation function and the pair potential from the Percus-Yevick equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present what we believe is a novel technique based on the moire effect for fully diagnosing the beam quality of an x-ray laser. Using Fresnel diffraction theory, we investigated the intensity profile of the moire pattern when a general paraxial beam illuminates a pair of Ronchi gratings in the quasi-far field. Two formulas were derived to determine the beam quality factor M-2 and the effective radius of curvature R-e from the moire pattern. On the basis of the results, the far-field divergence, the waist location, and the radius can be calculated further. Finally, we verified the approach by use of numerical simulation. (C) 1999 Optical Society of America [S0740-3232(99)01502-1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations of peak position of the rocking curve in the Bragg case are measured from a Ge thin crystal near the K-absorption edge. The variations are caused by a phase change of the real part of the atomic scattering factor. Based on the measurement, the values of the real part are determined with an accuracy of better than 1%. The values are the most reliable ones among those reported values so far as they are directly determined from the normal atomic scattering factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study on the layer structure of W/C multilayers deposited by magnetron sputtering is reported. In the study, soft x-ray resonant reflectivity and hard x-ray grazing incidence reflectivity of the W/C multilayers were measured. The imperfections at the interface such as interdiffusion and formation of compounds were dealt with by two methods. On analyzing the experimental results, we found that the incorporation of an interlayer was a more suitable method than the traditional statistical method to describe the layer structure of a W/C system we fabricated. The optical constants of each layer at a wavelength of 4.48 nm were also obtained from the analysis. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maintenance of the growth of the multibillion-dollar semiconductor industry requires the development of techniques for the fabrication and characterisation of nanoscale devices. Consequently, there is great interest in photolithography techniques such as extreme UV and x-ray. Both of these techniques are extremely expensive and technologically very demanding. In this paper we describe research on the feasibility of exploiting x-ray propagation within carbon nanotubes (CNT's) for the fabrication and characterisation of nanoscale devices. This work discusses the parameters determining the design space available. To demonstrate experimentally the feasibility of x-ray propagation, arrays of carbon nanotubes have been grown on silicon membranes. The latter are required to provide structural support for the CNT's while minimising energy loss. To form a waveguide metal is deposited between the nanotubes to block x-ray transmission in this region at the same time as cladding the CNT's. The major challenge has been to fill the spaces between the CNT's with material of sufficient thickness to block x-ray transmission while maintaining the structural integrity of the CNT's. Various techniques have been employed to fill the gaps between the nanotubes including electroplating, sputtering and evaporation. This work highlights challenges encountered in optimising the process.