955 resultados para Trees, Fossil
Resumo:
Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.
Resumo:
Strontium and neodymium radiogenic isotope ratios in early to middle Eocene fossil fish debris (ichthyoliths) from Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302) help constrain water mass compositions in the Eocene Arctic Ocean between 55 and 45 Ma. The inferred paleodepositional setting was a shallow, offshore marine to marginal marine environment with limited connections to surrounding ocean basins. The new data demonstrate that sources of Nd and Sr in fish debris were distinct from each other, consistent with a salinity-stratified water column above Lomonosov Ridge in the Eocene. The 87Sr/86Sr values of ichthyoliths (0.7079 - 0.7087) are more radiogenic than Eocene seawater, requiring brackish to fresh water conditions in the environment where fish metabolized Sr. The 87Sr/86Sr variations probably record changes in the overall balance of river Sr flux to the Eocene Arctic Ocean between 55 and 45 Ma and are used here to reconstruct surface water salinity values. The eNd values of ichthyoliths vary between -5.7 and -7.8, compatible with periodic (or intermittent) supply of Nd to Eocene Arctic intermediate water (AIW) from adjacent seas. Although the Norwegian-Greenland Sea and North Atlantic Ocean were the most likely sources of Eocene AIW Nd, input from the Tethys Sea (via the Turgay Strait in early Eocene time) and the North Pacific Ocean (via a proto-Bering Strait) also contributed.
Resumo:
Microfossil assemblages in Pliocene sediments from DSDP Site 274 (68°59.81'S, 173°2564'E) provide data on the age of the sediments and suggest the presence of Nothofagus (southern beach) in Antarctica during the Pliocene. A suite of 17 samples was collected in an interval from Samples 28-274-6R-1, 83-87 cm to 28-274-11R-4, 73-77 cm (48.33-100.29 mbsf). Biostratigraphic study of the abundant diatom assemblages combined with published radiolarian data indicates that the sample interval ranges in age from 5.0 to 2.2 Ma, with an apparent unconformity between about 3.8 and 3.2 Ma. Nothofagidites (the genus for fossil pollen referable to Nothofagus) occurs throughout the interval, as well as pollen and spores with known stratigraphic ranges that unequivocally indicate reworking from older rocks. Species of Nothofagidites recovered include N. asperus, N. brachyspinulosus, N. flemingii, N. senectus, and N. sp. cf. N. lachlaniae; the latter form is previously known from the Sirius Group in the Transantarctic Mountains. Abundant palynomorphs were recovered in only three of the samples from Site 274 (Samples 28-274-9R-2,15-19 cm; 28-274-9R-2,48-52 cm; and 28-274-9R-2,65-69 cm). Based on the diatom and radiolarian biostratigraphic data, the ages of these samples range from 3.00 to 3.01 Ma. The relative abundance of N. sp. cf. N. lachlaniae in the three samples is an order of magnitude higher than relative abundances for the other species of Nothofagidites in the same samples. The signiticantly higher relative abundance of N. sp. cf. N. luchlaniae suggests that this pollen was derived from trees of Nothofugus that were living in Antarctica during the mid Pliocene. Diatom assemblages from these three samples indicate that sediments in this interval were rapidly deposited as biogenic oozes in an open-ocean setting relatively free of sea ice, thus decreasing the possibility of reworking from a single source bed rich in N. sp. cf. N. lachlaniae. Clearly, more detailed work in additional well-dated cores from around Antarctica is needed before a clear picture of the Neogene history of Antarctic terrestrial vegetation emerges.
Resumo:
We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.