973 resultados para Tick fever
Resumo:
AIMS In symptomatic fever management, there is often a gap between everyday clinical practice and current evidence. We were interested to see whether the three linguistic regions of Switzerland differ in the management of fever. METHODS A close-ended questionnaire, sent to 900 Swiss paediatricians, was answered by 322 paediatricians. Two hundred and fourteen respondents were active in the German speaking, 78 in the French speaking and 30 in the Italian speaking region. RESULTS Paediatricians from the French and Italian speaking regions identify a lower temperature threshold for initiating a treatment and more frequently reduce it for children with a history of febrile seizures. A reduced general appearance leads more frequently to a lower threshold for treatment in the German speaking than in the French and Italian speaking areas. Among 1.5 and 5-year-old children the preference for the rectal route is more pronounced in the German than in the French speaking region. French speaking respondents more frequently prescribe ibuprofen and an alternating regimen with two drugs than German speaking respondents. Finally, the stated occurrence of exaggerated fear of fever was higher in the German and Italian speaking regions. CONCLUSIONS Switzerland offers the opportunity to compare three different regions with respect to management of febrile children. This inquiry shows regional differences in symptomatic fever management and in the perceived frequency of exaggerated fear of fever. The gap between available evidence and clinical practice is more pronounced in the French and in the Italian speaking regions than in the German speaking region.
Resumo:
BACKGROUND: Due to climate changes during the last decades, ticks have progressively spread into higher latitudes in northern Europe. Although some tick borne diseases are known to be endemic in Finland, to date there is limited information with regard to the prevalence of these infections in companion animals. We determined the antibody and DNA prevalence of the following organisms in randomly selected client-owned and clinically healthy hunting dogs living in Finland: Ehrlichia canis (Ec), Anaplasma phagocytophilum (Ap), Borrelia burgdorferi (Bb) and Bartonella. METHODS: Anti-Ap, -Bb and -Ec antibodies were determined in 340 Finnish pet dogs and 50 healthy hunting dogs using the 4DX Snap(R)Test (IDEXX Laboratories). In addition, PCRs for the detection of Ap and Bartonella DNA were performed. Univariate and multivariate logistic regression analyses were used to identify risk factors associated with seropositivity to a vector borne agent. RESULTS: The overall seroprevalence was highest for Ap (5.3%), followed by Bb (2.9%), and Ec (0.3%). Seropositivities to Ap and Bb were significantly higher in the Aland Islands (p <0.001), with prevalence of Ap and Bb antibodies of 45 and 20%, respectively. In healthy hunting dogs, seropositivity rates of 4% (2/50) and 2% (1/50) were recorded for Ap and Bb, respectively. One client-owned dog and one hunting dog, both healthy, were infected with Ap as determined by PCR, while being seronegative. For Bartonella spp., none of the dogs tested was positive by PCR. CONCLUSIONS: This study represents the first data of seroprevalence to tick borne diseases in the Finnish dog population. Our results indicate that dogs in Finland are exposed to vector borne diseases, with Ap being the most seroprevalent of the diseases tested, followed by Bb. Almost 50% of dogs living in Aland Islands were Ap seropositive. This finding suggests the possibility of a high incidence of Ap infection in humans in this region. Knowing the distribution of seroprevalence in dogs may help predict the pattern of a tick borne disease and may aid in diagnostic and prevention efforts.
Resumo:
Tick-borne encephalitis virus (TBEV) is the causative agent of human TBE, a severe infection that can cause long-lasting neurologic sequelae. Langat virus (LGTV), which is closely related to TBEV, has a low virulence for human hosts and has been used as a live vaccine against TBEV. Tick-borne encephalitis by natural infection of LGTV in humans has not been described, but one of 18,500 LGTV vaccinees developed encephalitis. The pathogenetic mechanisms of TBEV are poorly understood and, currently, no effective therapy is available. We developed an infant rat model of TBE using LGTV as infective agent. Infant Wistar rats were inoculated intracisternally with 10 focus-forming units of LGTV and assessed for clinical disease and neuropathologic findings at Days 2, 4, 7, and 9 after infection. Infection with LGTV led to gait disturbance, hypokinesia, and reduced weight gain or weight loss. Cerebrospinal fluid concentrations of RANTES, interferon-γ, interferon-β, interleukin-6, and monocyte chemotactic protein-1 were increased in infected animals. The brains of animals with LGTV encephalitis exhibited characteristic perivascular inflammatory cuffs and glial nodules; immunohistochemistry documented the presence of LGTV in the thalamus, hippocampus, midbrain, frontal pole, and cerebellum. Thus, LGTV meningoencephalitis in infant rats mimics important clinical and histopathologic features of human TBE. This new model provides a tool to investigate disease mechanisms and to evaluate new therapeutic strategies against encephalitogenic flaviviruses.
Resumo:
This study investigated the attitudes and beliefs of pig farmers and hunters in Germany, Bulgaria and the western part of the Russian Federation towards reporting suspected cases of African swine fever (ASF). Data were collected using a web-based questionnaire survey targeting pig farmers and hunters in these three study areas. Separate multivariable logistic regression models identified key variables associated with each of the three binary outcome variables whether or not farmers would immediately report suspected cases of ASF, whether or not hunters would submit samples from hunted wild boar for diagnostic testing and whether or not hunters would report wild boar carcasses. The results showed that farmers who would not immediately report suspected cases of ASF are more likely to believe that their reputation in the local community would be adversely affected if they were to report it, that they can control the outbreak themselves without the involvement of veterinary services and that laboratory confirmation would take too long. The modelling also indicated that hunters who did not usually submit samples of their harvested wild boar for ASF diagnosis, and hunters who did not report wild boar carcasses are more likely to justify their behaviour through a lack of awareness of the possibility of reporting. These findings emphasize the need to develop more effective communication strategies targeted at pig farmers and hunters about the disease, its epidemiology, consequences and control methods, to increase the likelihood of early reporting, especially in the Russian Federation where the virus circulates
Resumo:
Tick borne encephalitis virus (TBE) is an endemic infectious agent in northeastern Switzerland causing mainly meningoencephalomyelitis in dogs. We report a canine case of tick born meningoencephalomyelitis resulting in flaccid tetraplegia and, subsequently, fatal respiratory failure. Magnetic resonance imaging (MRI) demonstrated intra-axial bilateral, symmetric, and hyperintense lesions in T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) sequences affecting thalamus, basal nuclei, cerebral white matter and ventral horns of the caudal cervical spine. These radiological findings overlap those described during flavivirus encephalitis affecting human beings. These lesions in MRI and diffusion weighted images correlated with areas of vasogenic edema detected histopathologically. In endemic regions, clinicians should be aware that bilateral, symmetrical hyperintense thalamic lesions in T2WI can be suggestive of flavivirus infection in dogs with encephalitis
Resumo:
Coxiella burnetii infection (Q fever) is a widespread zoonosis with low endemicity in Switzerland, therefore no mandatory public report was required. A cluster of initially ten human cases of acute Q fever infections characterized by prolonged fever, asthenia and mild hepatitis occurred in 2012 in the terraced vineyard of Lavaux. Epidemiological investigations based on patients' interviews and veterinary investigations included environmental sampling as well as Coxiella-specific serological assay and molecular examinations (real-time PCR in vaginal secretions) of suspected sheep. These investigations demonstrated that 43% of sheep carried the bacteria whereas 30% exhibited anti-Coxiella antibodies. Mitigation measures, including limiting human contacts with the flock, hygiene measures, flock vaccination and a public official alert, have permitted the detection of four additional human cases and the avoidance of a much larger outbreak. Since November 2012, mandatory reporting of Q fever to Swiss public health authorities has been reintroduced. A close follow up of human cases will be necessary to identify chronic Q fever.
Resumo:
Canine granulocytic anaplasmosis (CGA) is caused by the rickettsial microorganism Anaplasma phagocytophilum. CGA is typically characterized by fever, thrombocytopenia, lethargy, anorexia, arthropy, and other nonspecific clinical signs. Skin lesions have been described in naturally infected lambs and humans. The pathophysiology of CGA is not entirely clear, and the persistence of the organism after the resolution of clinical signs has been described. The aim of the study was to investigate if A. phagocytophilum can be detected in canine lesional skin biopsies from A. phagocytophilum-seropositive dogs with etiologically unclear skin lesions that improved after the treatment with doxycycline. Paraffin-embedded lesional skin biopsies were allocated into separate groups: biopsies from A. phagocytophilum-seropositive dogs responsive to treatment with doxycycline (n=12), biopsies from A. phagocytophilum-seronegative dogs (n=2), and biopsies in which skin lesions histopathologically resembled a tick bite (n=10). The serological status of the latter group was unknown. Histology of the seropositive and seronegative dog skin lesions did not indicate an etiology. DNA was extracted, and a conventional PCR for partial 16S rRNA gene was performed. Anaplasma phagocytophilum DNA was amplified from 4/12 seropositive dogs' skin biopsies. All sequences were 100% identical to the prototype A. phagocytophilum human strain (GenBank accession number U02521). Anaplasma phagocytophilum was not amplified from the 2 seronegative and 10 suspected tick bite dogs. Serum antibody titers of the PCR-positive dogs ranged from 1:200 to 1:2048. Histopathologically, a mild-to-moderate perivascular to interstitial dermatitis composed of a mixed cellular infiltrate and mild-to-moderate edema was seen in all seropositive dogs. In 8/12 seropositive dogs, vascular changes as vasculopathy, fibrinoid necrosis of the vessel walls, and leukocytoclastic changes were observed. In summary, our results support the hypothesis that the persistence of A. phagocytophilum in the skin may be causative for otherwise unexplained skin lesions in seropositive dogs.
Resumo:
Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.
Resumo:
Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.
Resumo:
The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.
Resumo:
Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.
Resumo:
It is well established that trans-placental transmission of classical swine fever virus (CSFV) during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs might go unnoticed. In addition to the epidemiological and economic significance of persistent CSFV infection, this model could be useful for understanding the mechanisms of viral persistence.
Resumo:
Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling.
Resumo:
Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE- vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE- replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs.