915 resultados para Three-component Magma Mixing
Resumo:
The geochemistry of basalts recovered from seven sites in the North Atlantic is described with particular reference to minor elements. Three sites (407, 408, and 409) along the same mantle flow line, transverse to the Reykjanes Ridge at about 63°N, provide information on the composition of basalts erupted over a 34-m.y. interval between 2.3 and 36 m.y. ago. At Site 410, at 45°N, penetration into 10 m.y.-old crust west of the ridge axis permits comparisons with young basalts dredged from the median valley at 45°N. Three sites in the FAMOUS area at about 36°N provided material from very young (1 m.y.) basaltic crust (Site 411), and material to test the geochemical coherence of basalts of different ages (1.5 and 3.5 m.y.) on either side of a fracture zone (Sites 412 and 413). These sites complement earlier data from dredged and drilled sites (Leg 37) in the FAMOUS area. At Site 407, four geochemically distinct basalt units occur, with different normative and rare-earth element (REE) characteristics, and there is a clear correlation with magnetic stratigraphy. Yet there is a remarkable consistency in incompatible element ratios between these units, indicating derivation from an essentially similar mantle source. The basalts from the younger sites, 408 and 409, show a similar range of normative and REE variation, but incompatible element ratios are identical to those at Site 407, indicating that basalts at all three sites were produced from a mantle source which was geochemically relatively uniform. Rare-earth differences between the basalts can be interpreted in terms of variations in the degree and depth of partial melting causing HREE (+Y) retention in the source, although there may be some inter-site differences with respect to REE. A similar picture is presented at 45°N. Apparently a range of tholeiitic, transitional, and alkalic basalts were being erupted 10 m.y. ago, which have almost identical geochemical characteristics to those recently erupted in the median valley at 45°N. Incompatible element ratios are markedly different from those recorded at the Reykjanes Ridge. Basalts recovered from the FAMOUS sites are geochemically similar to previous samples recovered from the FAMOUS area, and their incompatible element ratios are similar, but not identical, to those at 45°N. However, total trace element levels are consistently lower than in 45°N basalts, which might imply smaller degrees of partial melting and/or greater depths of magma generation at 45°N, or higher trace element levels in the mantle source at 45°N. Few of the basalts recovered on Leg 49 have the geochemical characteristics of typical "MORB" (e.g., Nazca Plate, Leg 34). The data strongly support models invoking geochemical inhomogeneity in the source regions of basalts produced at the Mid-Atlantic Ridge. However, the data also introduce an additional time factor into such models and demonstrate the uniformity of the mantle source at a particular ridge sector (over periods in excess of 30 m.y.), while emphasizing the marked differences along the ridge. Mixing models invoking "depleted" and "enriched" mantle sources would seem to be inadequate to account for the observed variations.
Resumo:
A total of five sediment cores from three sites, the Arctic Ocean, the Fram Strait and the Greenland Sea, yielded evidence for geomagnetic reversal excursions and associated strong lows in relative palaeointensity during oxygen isotope stages 2 and 3. A general similarity of the obtained relative palaeointensity curves to reference data can be observed. However, in the very detail, results from this high-resolution study differ from published records in a way that the prominent Laschamp excursion is clearly characterized by a significant field recovery when reaching the steepest negative inclinations, whereas only the N-R and R-N transitions are associated with the lowest values. Two subsequent excursions also reach nearly reversed inclinations but without any field recovery at that state. A total of 41 accelerator mass spectrometry (AMS) 14C ages appeared to allow a better age determination of these three directional excursions and related relative palaeointensity variations. However, although the three sites yielded more or less consistent chronological as well as palaeomagnetic results a comparison to another site, PS2644 in the Iceland Sea, revealed significant divergences in the ages of the geomagnetic field excursions of up to 4 ka even on basis of uncalibrated AMS 14C ages. This shift to older 14C ages cannot be explained by a time-transgressive character of the excursions, because the distance between the sites is small when compared with the size of and the distance to the geodynamo in the Earth's outer core. The most likely explanation is a difference of reservoir ages and/or mixing with old 14C-depleted CO2 from glacier ice expelled from Greenland at site PS2644.
Resumo:
Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.
Resumo:
Serpentinized abyssal peridotites sampled by the Ocean Drilling Program Leg 209 along the mid-Atlantic Ridge near the 15°20'N Fracture Zone have been analyzed for oxygen, hydrogen, and chlorine isotope compositions in order to determine isotopic behavior under a wide range of serpentinization conditions and place constraints on fluid history. Oxygen and hydrogen thermometry suggests peak serpentinization temperatures of 300-500°C. Serpentine separates have low deltaD values possibly due to a magmatic fluid component or low-temperature exchange during seafloor weathering. Chlorine geochemistry focused on three holes: 1274A and 1272A (serpentinized peridotites) and 1268A (serpentinite locally altered to talc). Concentrations of both, water-soluble chloride (WSC) and structurally bound chloride (SBC) are significantly lower at Hole 1268A compared to Holes 1274A and 1272A. The delta37Cl values for WSC and SBC of serpentinites in Holes 1274A and 1272A are slightly positive (avg. WSC = 0.20 per mil, n = 22 and avg. SBC = 0.35 per mil, n = 22), representing typical seawater-hydration conditions commonly determined for abyssal peridotite. The SBC of serpentinites from Hole 1268A are also positive (avg. = 0.63 per mil); whereas, the SBC in talc-dominated samples is negative (avg. = -1.22 per mil). The WSC of both talc- and serpentine-dominated samples are also negative (avg. = -0.15 per mil). We interpret the chlorine isotope data to preserve a record of multiple fluid events. As seawater hydrated the peridotite, 37Cl was preferentially incorporated into the forming serpentine and water-soluble salts, yielding similar delta37Cl values on a regional scale as sampled by Holes 1268A, 1274A and 1272A. The resultant pore fluid was left depleted in 37Cl. Locally (Hole 1268A), this evolved fluid was remobilized possibly due to the initiation of hydrothermal circulation in response to emplacement of a mafic magma body. The low delta37Cl pore fluids attained elevated SiO2 and sulfur concentrations due to interaction with the gabbroic intrusion and, when ascending through the surrounding serpentinite, caused formation of isotopically negative talc. This secondary fluid also flushed the preserved serpentinite of its previously formed salts, resulting in negative delta37Cl WSC values. The delta37Cl SBC values of the serpentinite samples remained unmodified by reaction with the secondary fluid.
Resumo:
Forty-three samples from DSDP Holes 556-559 and 561-564 were analyzed for rare earth elements (REE), Sc, Cr, Co, Hf, Ta, and Th by instrumental neutron activation analysis. The recovered basalts range from those depleted in light REE (LREE) to those enriched in LREE. The two types of basalts occur together in Holes 558 and 561. The depleted basalts have remarkably constant La/Yb, La/Sm, and La/Ti ratios and apparently derive from a large, homogeneous, mantle source underneath a segment (1200 km long) of the Mid-Atlantic Ridge. The almost twofold variation in the concentrations of incompatible trace elements in the depleted basalts is primarily due to different degrees of batch partial melting. The variation of highly to moderately incompatible elements in the Leg 82 enriched basalts can be successfully explained in terms of source mixing between depleted mantle sources and alkaline or nephelinitic magmas similar to Azores Islands magmas. However, the correlation of LREE enrichment with distance from the Azores Triple Junction is tenuous at best, and the enriched alkaline component is probably not directly related to the Azores volcanism.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The mammalian retromer protein complex, which consists of three proteins - Vps26, Vps29, and Vps35 - in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.
Resumo:
Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O–H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0–41 min, a decrease in the broad band around 3390 cm−1 was observed, indicating that bulk water was evaporated. In the drying time range of 49–195 min, decreases in the bands at 3412, 3344 and 3286 cm−1 assigned to the O6H6cdots, three dots, centeredO3′ interchain hydrogen bonds (H-bonds), the O3H3cdots, three dots, centeredO5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6cdots, three dots, centeredO3′ interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6cdots, three dots, centeredO3′ interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.
Resumo:
Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.
Resumo:
A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.
Resumo:
In printed circuit board (PCB) assembly, the efficiency of the component placement process is dependent on two interrelated issues: the sequence of component placement, that is, the component sequencing problem, and the assignment of component types to feeders of the placement machine, that is, the feeder arrangement problem. In cases where some components with the same type are assigned to more than one feeder, the component retrieval problem should also be considered. Due to their inseparable relationship, a hybrid genetic algorithm is adopted to solve these three problems simultaneously for a type of PCB placement machines called the sequential pick-and-place (PAP) machine in this paper. The objective is to minimise the total distance travelled by the placement head for assembling all components on a PCB. Besides, the algorithm is compared with the methods proposed by other researchers in order to examine its effectiveness and efficiency.
Resumo:
Mistuning a harmonic produces an exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that causes the other harmonics (constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (nominal F0 frequency = 200 Hz) was mistuned by +8% and -8%. The pitch-shift gradient was defined as the difference between these values and its magnitude was used as a measure of frame integration. An independent and random perturbation (spectral jitter) was applied simultaneously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to ±40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient, but more distant components also contributed. The stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The aim of the work described in this paper was two-fold: (1) the purification of the hydroxylase component of the MSAMO to electrophoretic homogeneity using a four-step chromatographic strategy and (2) the crystallization of the two-component hydroxylase of the MSAMO in order to enhance our understanding of the precise three-dimensional structure of the MSAMO, thus yielding an insight into the nature of the active site of this enzyme. Optimised crystallization conditions were identified allowing growth of crystals of the hydroxylase component of the MSAMO within five days. Crystals exhibited a brown colour suggesting the presence on an intact Rieske-iron sulfur centre and diffracted to 7.0 Å when a few degrees of data were evaluated on a beam line X11. © 2006 Elsevier Inc. All rights reserved.
Resumo:
This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.