944 resultados para Temperature range
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The spin injector part of spintronic FET and diodes suffers from fatigue due to rising heat on the depletion layer. In this study the stiffness of Ga1-xMnxAs spin injector in terms of storage modulus with respect to a varying temperature, 45 degrees C <= T <= 70 degrees C was determined. It was observed that the storage modulus for MDLs (Manganese Doping Levels) of 0%, 1% and 10% decreased with increase in temperature while that with MDLs of 20% and 50% increase with increase in temperature. MDLs of 20% and 50% appear not to allow for damping but MDLs <= 20% allow damping at temperature range of 45 degrees C <= T <= 70 degrees C. The magnitude of storage moduli of GaAs is smaller than that for ferromagnetic Ga1-xMnxAs systems. The loss moduli for GaAs were found to reduce with increase in temperature. Its magnitude of reducing gradient is smaller than Ga1-xMnxAs systems. The two temperature extremes show a general reduction in loss moduli for different MDLs at the study temperature range. From damping factor analysis, damping factors for ferromagnetic Ga1-xMnxAs was found to increase with decrease in MDLs contrary to GaAs which recorded the largest damping factor at 45 degrees C <= T <= 70 degrees C Hence, MDL of 20% shows little damping followed by 50% while MDL of 0% has the most damping in an increasing trend with temperature. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective. To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP)Methods. Sixty disc-shaped specimens (0, 12 mm; thickness, 1.6 mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8 Hz/200N); (T) thermal cycling (6,000 cycles/5-55 degrees C/30 s); (TM) thermomechanical cycling (1,200,000 cycles/3.8 Hz/200N with temperature range from 5 C to 55 C for 60s each); (AUT) 12h in autoclave at 134 degrees C/2 bars; and (STO) storage in distilled water (37 degrees C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1 mm/min, load 100 kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (alpha = 0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests.Results. ANOVA revealed that flexural strength was affected by the aging procedures (p = 0.002). The M (781.6 MPa) and TM (771.3 MPa) groups presented lower values of flexural strength than did C (955 MPa), AUT (955.8 MPa), T (960.8 MPa) and STO (910.4 MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p = 0.004). In addition, the surface roughnesses were similar among the groups (p = 0.165).Signcance. Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
The ceramic pigments are colored inorganic substances that during the process of dispersion in the ceramic glazes and subsequent calcination, are stable against physical and chemical attack. Therefore, they are crystalline compounds applied in the ceramic industry for coloring vitreous base. In this study, the Pechini method was used for obtaining the pigment CuCr2O4 with heat treatment at the temperatures of 800, 900 and 1000 ° C. The powder pigments were characterized on their structural, morphological and colorimetric aspects. The thermal analysis conducted on an amorphous precursor in a TG / DTA indicates the weight loss in the entire temperature range investigated, with characteristic exothermic peak of the elimination of the organic composition of the precursor around 300°C. The development of the crystalline phases were investigated by XRD, using a diffractometer with Cu Ka radiation and graphite monochromator, where it was observed the presence of crystalline phases corresponding to Cr2O3 and CuCr2O4.The measurements of the specific surface area of the powders pigments were carried out in an equipment Micromeritcs, model ASAP 2000, using N2 as gas of adsorption/desorption. The colorimetric measurements of the pigments were made in a colorimeter Gretac Macbeth Color-eye spectrophotometer 2180 / 2180UV in CIELAB standards. Based on the obtained results, it can be verified the thermal stability of the powder pigments of green coloration, which enables it as an alternative to the materials currently used in the manufacture of ceramic tiles.