990 resultados para Temperature Models
Resumo:
Eight different models to represent the effect of friction in control valves are presented: four models based on physical principles and four empirical ones. The physical models, both static and dynamic, have the same structure. The models are implemented in Simulink/Matlab (R) and compared, using different friction coefficients and input signals. Three of the models were able to reproduce the stick-slip phenomenon and passed all the tests, which were applied following ISA standards. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents two strategies for the upgrade of set-up generation systems for tandem cold mills. Even though these mills have been modernized mainly due to quality requests, their upgrades may be made intending to replace pre-calculated reference tables. In this case, Bryant and Osborn mill model without adaptive technique is proposed. As a more demanding modernization, Bland and Ford model including adaptation is recommended, although it requires a more complex computational hardware. Advantages and disadvantages of these two systems are compared and discussed and experimental results obtained from an industrial cold mill are shown.
Resumo:
The objective of this study was to evaluate the sensory stability of ultra-high temperature (UHT) milk subjected to different heat treatments and stored at room temperature in white high density polyethylene bottles (HDPE) pigmented with titanium dioxide. Two lots of 300 units each were processed, respectively, at 135 and 141 degrees C/10 s using indirect heating and subsequently aseptically filled in an ISO class 7 clean room. These experimental lots were evaluated for appearance, aroma, flavor, and overall appreciation and compared to samples of commercial UHT milk purchased from local commercial stores. The time-temperature combinations investigated did not affect either the acceptability or the shelf life of the milk. Despite the limited light barrier properties of HDPE bottles, the product contained in the package tested exhibited good stability, with a shelf life ranging from 4 to 11 wk. Within this time period, the acceptability of the experimental lots was similar to that of the commercial products. The results achieved in this study contribute to turn the low-cost UHT system investigated into a technically viable option for small-size dairy processing plants.
Resumo:
Indium tin oxide (ITO) thin films have been deposited on (100) Si substrates by RF magnetron sputtering from a compact target (90% In(2)O(3)-10% SnO(2) in weight) with 6 in. in diameter. In order to perform electromechanical characterizations of these films, strain gauges were fabricated. An experimental set-up based on bending beam theory was developed to determine the longitudinal piezoresistive coefficient (pi(1)) of the strain gauges fabricated. It has been confirmed that electrical resistance of the strain gauges decreases with load increases which results a negative gauge factor. A model based on the activation energy was used to explain the origin of this negative signal. The influence of the temperature on piezoresistive properties of ITO films was also evaluated.
Resumo:
Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550 degrees C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chro-mium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450 degrees C, forming pre-dominantly expanded austenite (gamma(N)), with a crystalline structure best represented by a special triclin-ic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.
Resumo:
Computer viruses are an important risk to computational systems endangering either corporations of all sizes or personal computers used for domestic applications. Here, classical epidemiological models for disease propagation are adapted to computer networks and, by using simple systems identification techniques a model called SAIC (Susceptible, Antidotal, Infectious, Contaminated) is developed. Real data about computer viruses are used to validate the model. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.
Resumo:
Mixed models have become important in analyzing the results of experiments, particularly those that require more complicated models (e.g., those that involve longitudinal data). This article describes a method for deriving the terms in a mixed model. Our approach extends an earlier method by Brien and Bailey to explicitly identify terms for which autocorrelation and smooth trend arising from longitudinal observations need to be incorporated in the model. At the same time we retain the principle that the model used should include, at least, all the terms that are justified by the randomization. This is done by dividing the factors into sets, called tiers, based on the randomization and determining the crossing and nesting relationships between factors. The method is applied to formulate mixed models for a wide range of examples. We also describe the mixed model analysis of data from a three-phase experiment to investigate the effect of time of refinement on Eucalyptus pulp from four different sources. Cubic smoothing splines are used to describe differences in the trend over time and unstructured covariance matrices between times are found to be necessary.
Resumo:
In this paper, we present various diagnostic methods for polyhazard models. Polyhazard models are a flexible family for fitting lifetime data. Their main advantage over the single hazard models, such as the Weibull and the log-logistic models, is to include a large amount of nonmonotone hazard shapes, as bathtub and multimodal curves. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. A discussion of the computation of the likelihood displacement as well as the normal curvature in the local influence method are presented. Finally, an example with real data is given for illustration.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Capybaras were monitored weekly from 1998 to 2006 by counting individuals in three anthropogenic environments (mixed agricultural fields, forest and open areas) of southeastern Brazil in order to examine the possible influence of environmental variables (temperature, humidity, wind speed, precipitation and global radiation) on the detectability of this species. There was consistent seasonality in the number of capybaras in the study area, with a specific seasonal pattern in each area. Log-linear models were fitted to the sample counts of adult capybaras separately for each sampled area, with an allowance for monthly effects, time trends and the effects of environmental variables. Log-linear models containing effects for the months of the year and a quartic time trend were highly significant. The effects of environmental variables on sample counts were different in each type of environment. As environmental variables affect capybara detectability, they should be considered in future species survey/monitoring programs.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In recent years, maize has become one of the main alternative crops for the autumn winter growing season in the central-western and southeastern regions of Brazil. However, water deficits, sub-optimal temperatures and low solar radiation levels are common problems that are experienced during this growing season by local farmers. One methodology to assess the impact of variable weather conditions on crop production is the use of crop simulation models. The goal of this study was to evaluate the effect of climate variability on maize yield for a subtropical region of Brazil. Specific objectives for this study were (1) to analyse the effect of El Nino Southern Oscillation (ENSO) on precipitation and air temperature for four locations in the state of Sao Paulo and (2) to analyse the impact of ENSO on maize grown off-season for the same four locations using a crop simulation model. For each site, historical weather data were categorised as belonging to one of three phases of ENSO: El Nino (warm sea surface temperature anomalies in the Pacific), La Nina (cool sea surface temperature anomalies) or neutral, based on an index derived from observed sea surface temperature anomalies. During El Nino, there is a tendency for an increase in the rainfall amount during May for the four selected locations, and also during April, mainly in three of the locations, resulting in an increase in simulated maize yield planted between February 15 and March 15. In general, there was a decrease in the simulated yield for maize grown off-season during neutral years. This study showed how a crop model can be used to assess the impact of climate variability on the yield of maize grown off-season in a subtropical region of Brazil. The outcomes of this study can be very useful for both policy makers and local farmers for agricultural planning and decision making. Copyright (C) 2009 Royal Meteorological Society