955 resultados para Sustainable Cities
Resumo:
The construction industry has an obligation to respond to sustainability expectations of our society. Solutions that integrate innovative, intelligent and sustainability deliverables are vital for us to meet new and emerging challenges. Industrialised Building Systems (IBS), or known otherwise as prefabrication, employs a combination of ready-made components in the construction of buildings. They promote quality of production, enhance simplification of construction processes and minimise waste. The unique characteristics of this construction method respond well to sustainability. Despite the promises however, IBS has yet to be effectively implemented in Malaysia. There are often misconceptions among key stakeholders about IBS applications. The existing rating schemes fail to assess IBS against sustainability measures. To ensure the capture of full sustainability potential in buildings developed, the critical factors and action plans agreeable to all participants in the development processes need to be identified. Through questionnaire survey, eighteen critical factors relevant to IBS sustainability were identified and encapsulated into a conceptual framework to coordinate a systematic IBS decision making approach. Five categories were used to separate the critical factors into: ecological performance; economic value; social equity and culture; technical quality; and implementation and enforcement. This categorisation extends the "Triple Bottom Lines" to include social, economic, environmental and institutional dimensions. Semi-structured interviews help identify strategies of actions and solutions of potential problems through a SWOT analysis framework. These tools help the decision-makers maximise the opportunities by using available strengths, avoid weaknesses, and diagnose possible threats in the examined issues. The recommendations formed an integrated action plan to present information on what and how to improve sustainability through tackling each critical factor during IBS development. It can be used as part of the project briefing documents for IBS designers. For validation and finalisation the research deliverables, three case studies were conducted. The research fills a current gap by responding to IBS project scenarios in developing countries. It also provides a balanced view for designers to better understand sustainability potential and prioritize attentions to manage sustainability issues in IBS applications.
Resumo:
This paper explores how a world-wide operating software solutions provider implemented environmentally sustainable business practices in response to emerging environmental concerns. Through an interpretive case study, we develop a theoretical framework that identifies four important functional affordances originating in information systems, which are required in environmental sustainability transformations as they create an actionable context in which (1) organizations can engage in a sensemaking process related to understanding emerging environmental requirements, and (2) individuals can implement environmentally sustainable work practices. Through our work, we provide several contributions, including a better understanding of IS-enabled organizational change and the types of functional affordances of information systems that are required in sustainability transformations. We describe implications relating to (1) how information systems can contribute to the creation of environmentally sustainable organizations, (2) the design of information systems to create required functional affordances, (3) the management of sustainability transformations, and (4) the further development of the concept of functional affordances in IS research.
Resumo:
While scientists are still debating the level of climate change impact to new weather patterns, there have been some devastating natural disasters worldwide in the last decade. From cyclones to earthquakes and from Tsunamis to landslides, these disasters occur with formidable forces and crushing effects. As one of the most important arrangements to erase the negative influence of natural disasters and help with the recovery and redevelopment of the hit area, reconstruction is of utmost importance in light of sustainable objectives. However, current reconstruction practice confronts quite a lot of criticisms for focusing on providing short-term necessities. How to conduct the post disaster reconstruction in a long-term perspective and achieve sustainable development is thereby a highlight for industry practice and research. This paper introduced an on-going research project which is aimed at establishing an operational framework for improving sustainability performance of post disaster reconstruction by identifying critical sustainable factors and exploring their internal relationships. The research reported in this paper is part of the project. After a comprehensive literature review, 17 potential critical sustainability factors for post disaster reconstruction were identified. Preliminary examination and discussion of the factors was conducted.
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
Bangkok Metropolitan Region (BMR) is the centre for various major activities in Thailand including political, industry, agriculture, and commerce. Consequently, the BMR is the highest and most densely populated area in Thailand. Thus, the demand for houses in the BMR is also the largest, especially in subdivision developments. For these reasons, the subdivision development in the BMR has increased substantially in the past 20 years and generated large numbers of subdivision developments (AREA, 2009; Kridakorn Na Ayutthaya & Tochaiwat, 2010). However, this dramatic growth of subdivision development has caused several problems including unsustainable development, especially for subdivision neighbourhoods, in the BMR. There have been rating tools that encourage the sustainability of neighbourhood design in subdivision development, but they still have practical problems. Such rating tools do not cover the scale of the development entirely; and they concentrate more on the social and environmental conservation aspects, which have not been totally accepted by the developers (Boonprakub, 2011; Tongcumpou & Harvey, 1994). These factors strongly confirm the need for an appropriate rating tool for sustainable subdivision neighbourhood design in the BMR. To improve level of acceptance from all stakeholders in subdivision developments industry, the new rating tool should be developed based on an approach that unites the social, environmental, and economic approaches, such as eco-efficiency principle. Eco-efficiency is the sustainability indicator introduced by the World Business Council for Sustainable Development (WBCSD) since 1992. The eco-efficiency is defined as the ratio of the product or service value according to its environmental impact (Lehni & Pepper, 2000; Sorvari et al., 2009). Eco-efficiency indicator is concerned to the business, while simultaneously, is concerned with to social and the environment impact. This study aims to develop a new rating tool named "Rating for sustainable subdivision neighbourhood design (RSSND)". The RSSND methodology is developed by a combination of literature reviews, field surveys, the eco-efficiency model development, trial-and-error technique, and the tool validation process. All required data has been collected by the field surveys from July to November 2010. The ecoefficiency model is a combination of three different mathematical models; the neighbourhood property price (NPP) model, the neighbourhood development cost (NDC) model, and the neighbourhood occupancy cost (NOC) model which are attributable to the neighbourhood subdivision design. The NPP model is formulated by hedonic price model approach, while the NDC model and NOC model are formulated by the multiple regression analysis approach. The trial-and-error technique is adopted for simplifying the complex mathematic eco-efficiency model to a user-friendly rating tool format. Credibility of the RSSND has been validated by using both rated and non-rated of eight subdivisions. It is expected to meet the requirements of all stakeholders which support the social activities of the residents, maintain the environmental condition of the development and surrounding areas, and meet the economic requirements of the developers.
Resumo:
In Australia, the proportion of the population aged 65 years and over reached 13.5% in 2010 and is expected to increase steadily to around 20% by the year 2056 [Australia Bureau of Statistics (ABS), 2010], creating what has been regarded as a looming crisis in how to house and care for older people. As a viable accommodation option, the retirement village is widely accepted as a means of promoting and enhancing independence, choice and quality of life for older people. Recent research by Barker (2010) indicates that the current and potential residents of retirement villages are generally very conscious of resource consumption and would like their residences and community to be more sustainable. The aim of this study was to understand the perception of older people toward sustainability ideas and identify the sustainable practices involved in retirement villages to improve the wellbeing of residents. Multiple research methods, including content analysis, questionnaire survey, interviews and case studies were conducted for the research purpose. The results indicate that most retirement village residents understand and recognize the importance of sustainability in their lifestyle. However, their sustainability requirements need to be supported and enhanced by the provision of affordable sustainability features. Additionally, many retirement village developers and operators realize the importance of providing a sustainable retirement community for their residents, and that a sustainable retirement village (that is environmental-friendly, affordable, and improves social engagement) can be achieved through the consideration of project planning, design, construction, and operations throughout the project life cycle. The clear shift from healthcare to lifestyle-focused services in the recent development of retirement villages together with the increasing number of aged people moving into retirement villages (Simpson and Cheney, 2007) has raised awareness of the need for the retirement village industry to provide a sustainable community for older people to improve their life quality after retirement. This is the first critical study of sustainable development in the retirement village industry and its potential in addressing the housing needs of older people, providing a contribution towards improving the life quality of older people and with direct and immediate significance to the community as a whole.
Resumo:
In Australia, the building and construction industry is taking significant steps towards the enhancement of environmental performance of the built environment. A large number of world class sustainable buildings have been constructed in recent years, offering researchers and practitioners alike a good opportunity to identify the best practices and real life experiences in delivering high performance buildings. A case study of ONE ONE ONE Eagle Street, a 6 Star Green Star office building in Brisbane, was conducted to investigate the best practice in achieving this “world leader” green office building. The study identified a number of key factors relating to project delivery system, contractor selection method, client’s early commitment, design integration, communication as major contributors to the successful delivery of this project. Additionally, key environmentally sustainable features and their cost implications were explored through in-depth interviews with the main contractor. The findings of this study will shed lights on the successful delivery of sustainable buildings and provide practical implications for different stakeholders.
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer- Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges, and foundations of this research trajectory. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarizes related work in this field of interest. We conclude by introducing the papers that have been contributed to this special issue.
Resumo:
Purpose The purpose of this paper is to attempt to bridge the gap between sustainable housing and the use of smart technologies to improve the level of sustainability in the housing construction in Saudi Arabia, by discussing the barriers and enablers concerned with applying sustainability to housing construction in Saudi Arabia, which utilises smart technologies. Design/methodology/approach A Delphi method survey was employed, for which 25 individuals from three key stakeholder groups of the Saudi housing sector participated. They were asked about their degree of agreement (or disagreement) about the various barriers and enablers of applying sustainability to housing construction in Saudi Arabia, which utilises smart technologies. This research paper must be considered as an indicative study of selected experts that do not represent in any way the total population of Saudi Arabia. Findings Lack of public awareness has been identified as the most significant barrier in implementing sustainable housing development in Saudi Arabia, which utilises smart technologies. Raising awareness of the public to the benefits of sustainable housing and enlightening key project stakeholders in the design of sustainable housing are both essential in order to overcome the barriers discussed in this paper. In addition, it is important to adopt smart sustainable construction methods, exemplified by but not limited to, appropriate water preservation and wastewater treatment systems that are simultaneously smart and sustainable. Research limitations/implications This particular research has dealt with only barriers and enablers in the application of sustainability to housing in Saudi Arabia, which utilises smart technologies. For a more complete understanding, there is a need for further analysis of supplementary factors. Practical implications A study such as this, which identifies and prioritises barriers and enablers, could prove useful in guiding or encouraging the relevant ministry in Saudi Arabia to develop policies founded in the implementation of sustainability to the housing sector. Originality/value This research is a preliminary investigation into the implementation of sustainable housing development as it relates to Saudi Arabia.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Besides responding to challenges of rapid urbanization and growing traffic congestion, the development of smart transport systems has attracted much attention in recent times. Many promising initiatives have emerged over the years. Despite these initiatives, there is still a lack of understanding about an appropriate definition of smart transport system. As such, it is challenging to identify the appropriate indicators of ‘smartness’. This paper proposes a comprehensive and practical framework to benchmark cities according to the smartness in their transportation systems. The proposed methodology was illustrated using a set of data collected from 26 cities across the world through web search and contacting relevant transport authorities and agencies. Results showed that London, Seattle and Sydney were among the world’s top smart transport cities. In particular, Seattle and Paris ranked high in smart private transport services while London and Singapore scored high on public transport services. London also appeared to be the smartest in terms of emergency transport services. The key value of the proposed innovative framework lies in a comparative analysis among cities, facilitating city-to-city learning.
Resumo:
Over the past 20 years there has been a considerable push at all three tiers of Government and private industry in Australia to improve the energy efficiency and sustainability levels of residential housing. A number of these initiatives have been voluntary, such as solar power and solar heating rebates, with other mandatory measures being incorporated into building standards and codes. Although the importance of energy efficiency and sustainable materials have been widely conveyed both at the academic and public level, it does not always reflect in the residential house purchase decision by typical house buyers, including residential property investors. This paper will analyse a range of housing markets in Brisbane to determine the investment performance of those markets over the past 3 years to determine any significant differences between new residential suburbs and older residential suburbs where houses have not been constructed to the current energy efficiency and sustainability guidelines. The range of suburbs to be analysed will focus on middle to lower high value suburbs, with a particular focus on residential housing in Master Planned Communities to determine if socio-economic factors and development size and scope have an impact of the purchase and investment performance of sustainable houses in comparison to older housing stock. The paper confirms that the residential property market shows a higher capital return for residential property built under stricter sustainability guidelines than similar located and type of property built prior to the BCA 2004 and older style project type homes erected prior to 2000.
Resumo:
Achieving sustainable urban development is identified as one ultimate goal of many contemporary planning endeavours and has become central to formulation of urban planning policies. Within this concept, land-use and transport integration is highlighted as one of the most important and attainable policy objectives. In many cities, integration is embraced as an integral part of local development plans, and a number of key integration principles are identified. However, the lack of available evaluation methods to measure extent of urban sustainability levels prevents successful implementation of these principles. This paper introduces a new indicator-based spatial composite indexing model developed to measure sustainability performance of urban settings by taking into account land-use and transport integration principles. Model indicators are chosen via a thorough selection process in line with key principles of land-use and transport integration. These indicators are grouped into categories and themes according to their topical relevance. These indicators are then aggregated to form a spatial composite index to portray an overview of the sustainability performance of the pilot study area used for model demonstration. The study results revealed that the model is a practical instrument for evaluating success of local integration policies and visualizing sustainability performance of built environments and useful in both identifying problematic areas as well as formulating policy interventions.
Resumo:
This paper addresses challenges part of the shift of paradigm taking place in the way we produce, transmit and use power related to what is known as smart grids. The aim of this paper is to explore present initiatives to establish smart grids as a sustainable and reliable power supply system. We argue that smart grids are not isolated to abstract conceptual models alone. We suggest that establishing sustainable and reliable smart grids depend on series of contributions including modeling and simulation projects, technological infrastructure pilots, systemic methods and training, and not least how these and other elements must interact to add reality to the conceptual models. We present and discuss three initiatives that illuminate smart grids from three very different positions. First, the new power grid simulator project in the electrical engineering PhD program at Queensland University of Technology (QUT). Second, the new smart grids infrastructure pilot run by the Norwegian Centers of Expertise Smart Energy Markets (NCE SMART). And third, the new systemic Master program on next generation energy technology at østfold University College (Hiø). These initiatives represent future threads in a mesh embedding smart grids in models, technology, infrastructure, education, skills and people.