971 resultados para Structure Z c (3900)
Resumo:
The structure of the pseudo-merohedrally twinned crystal of the 1:1 proton-transfer compound of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with 4-aminopyridine: 4-aminopyridinium 3-carboxy-4-hydroxybenzenesulfonate sesquihydrate has been determined at 180 K and the hydrogen-bonding pattern is described. Crystals of the compound are monoclinic with space group P21/c, with unit cell dimensions a = 35.2589(8), b = 7.1948(1), c = 24.5851(5) Å, β = 110.373(2)o, and Z = 16. The monoclinic asymmetric unit comprises four cation-anion pairs and six water molecules of solvation with only the pyridinium cations having pseudo-symmetry as a result of inter-cation aromatic ring π-π stacking effects. Extensive hydrogen bonding gives a three-dimensional framework structure.
Resumo:
Detailed spectroscopic and chemical investigation of matioliite, including infrared and Raman spectroscopy, scanning electron microscopy and electron probe microanalysis has been carried out on homogeneous samples from the Gentil pegmatite, Mendes Pimentel, Minas Gerais, Brazil. The chemical composition is (wt.%): FeO 2.20, CaO 0.05, Na2O 1.28, MnO 0.06, Al2O3 39.82, P2O5 42.7, MgO 4.68, F 0.02 and H2O 9.19; total 100.00. The mineral crystallize in the monoclinic crystal system, C2/c space group, with a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, β = 110.97(3)°, V = 1587.9(4) Å3, Z = 4. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of matioliite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of matioliite.
Resumo:
Experimentally, hydrogen-free diamond-like carbon (DLC) films were assembled by means of pulsed laser deposition (PLD), where energetic small-carbon-clusters were deposited on the substrate. In this paper, the chemisorption of energetic C2 and C10 clusters on diamond (001)-( 2×1) surface was investigated by molecular dynamics simulation. The influence of cluster size and the impact energy on the structure character of the deposited clusters is mainly addressed. The impact energy was varied from a few tens eV to 100 eV. The chemisorption of C10 was found to occur only when its incident energy is above a threshold value ( E th). While, the C2 cluster was easily to adsorb on the surface even at much lower incident energy. With increasing the impact energy, the structures of the deposited C2 and C10 are different from the free clusters. Finally, the growth of films synthesized by energetic C2 and C10 clusters were simulated. The statistics indicate the C2 cluster has high probability of adsorption and films assembled of C2 present slightly higher SP3 fraction than that of C10-films, especially at higher impact energy and lower substrate temperature. Our result supports the experimental findings. Moreover, the simulation underlines the deposition mechanism at atomic scale.
Resumo:
Capture of an electron by tetracyanoethylene oxide can initiate a number of decomposition pathways. One of these decompositions yields [(NC)3C]− as the ionic product. Ab initio calculations (at the B3LYP/6-31+G∗ level of theory) indicate that the formation of [(NC)3C]− is initiated by capture of an electron into the LUMO of tetracyanoethylene oxide to yield the anion radical [(NC)2C–O–C(CN)2]−· that undergoes internal nucleophilic substitution to form intermediate [(NC)3C–OCCN]−·. This intermediate dissociates to form [(NC)3C]− (m/z 90) as the ionic product. The radical (NC)3C· has an electron affinity of 4.0 eV (385 kJ mol−1). Ab initio calculations show that [(NC)3C]− is trigonal planar with the negative charge mainly on the nitrogens. A pictorial representation of this structure is the resonance structure formed from three degenerate contributing structures (NC)2–CCN−. The other product of the reaction is nominally (NCCO)·, but there is no definitive experimental evidence to indicate whether this radical survives intact, or decomposes to NC· and CO. The overall process [(NC)2C–O–C(CN)2]−· → [(NC)3C]− + (NCCO)· is calculated to be endothermic by 21 kJ mol−1 with an overall barrier of 268 kJ mol−1.
Resumo:
The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.
Resumo:
Efficient hydrogenated diamond-like carbon (DLC) film deposition in a plasma reactor that features both the capacitive and inductively coupled operation regimes is reported. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (LF ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. The films deposited in the electrostatic mode feature graphite-like structure. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. Raman spectrometry suggests the possibility to control relative proportions of sp2 and sp3 hybridized carbon. Variation of the DC substrate bias results in dramatic modification of the film structure from the polymeric (unbiased substrates) to the diamond-like (optimized bias). It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 20 m Torr H-mode CH4+Ar gas mixture discharge, the DLC film exhibits mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.
Resumo:
The crystal structure of KNb0.5V0.5OPO4, a new KTiOPO4 isomorph, has been refined from powder X-ray diffraction data by Rietveld refinement. The structure is orthorhombic, space group Pna2(1), with a = 12.933(1), b = 6.4713(8), and c = 10.7273(6) Angstrom, Z = 8. There is a preferential distribution of Nb(V) and V(III) atoms in the octahedral M(1) [0.806Nb, 0.194V] and M(2) [0.194Nb, 0.806V] sites, the M(1)O-6 octahedra being more distorted than the M(2)O-6 octahedra. The results are compared with other KTiOPO4 derivatives.
Resumo:
Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.
Resumo:
The crystal structure determination of the heptapeptide Boc-Val-Ala-Leu-Aib-Val-Ala-Phe-OMe reveals two peptide helices in the asymmetric unit, Crystal parameters are: space group P2(1), a = 10.356(2) Angstrom, b = 19.488(5) Angstrom, c = 23.756(6) Angstrom, beta = 102.25(2)degrees), V = 4685.4 Angstrom(3), Z = 4 and R = 5.7% for 7615 reflections [I>3 sigma(I)]. Both molecules adopt largely alpha-helical conformations with variations at the C-terminus, Helix type Is determined by analysing both 4-->1 and 5-->1 hydrogen-bond interactions and comparison with the results of analysis of protein structures. The presence of two 4-->1 hydrogen-bond interactions, besides four 5-->1 interact ions in both the conformations provides an opportunity to characterize bifurcated hydrogen bonds at high resolution, Comparison of the two helical conformations with related peptide structures suggests that distortions at the C-terminus are more facile than at the N-terminus.
Resumo:
Diruthenium (II. III) complexes of the type [Ru-2(O2CAr)(4) (2-mimH)(2)](ClO4) (Ar = C6H4-p-X : X=OMe,1, X=Me, 2, 2-mimH=2-methylimidazole) have been isolated from the reaction of Ru2Cl(O2CAr)(4) with 2-mimH in CH2Cl2 followed by the addition of NaClO4. The crystal structure of 1.1.75CH(2)Cl(2).H2O has been determined. The crystal belongs to the monoclinic space group p2(1)/c with the following unit cell dimensions for the C40H40N4O16ClRu2.1.75CH(2)Cl(2).H2O (M = 1237.0) : a = 12.347(3)Angstrom, b = 17.615(5)Angstrom, c = 26.148(2)Angstrom,beta = 92.88(1)degrees. v = 5679(2)Angstrom(3). Z=4, D-c = 1.45 g cm(-3). lambda(Mo-K-alpha) = 0.7107 Angstrom, mu(Mo-K-alpha) = 8.1 cm(-1), T = 293 K, R = 0.0815 (wR(2) = 0.2118) for 5834 reflections with 1 > 2 sigma(I). The complex has a tetracarboxylatodiruthenium (II, III) core and two axially bound 2-methylimidazole ligands. The Ru-Ru bond length is 2.290(1)Angstrom. The Ru-Ru bond order is 2.5 and the complex is three-electron paramagnetic. The complex shows an irreversible Ru-2(II,III)-->Ru-2(Il,II) reduction near -0.2 V vs SCE in CH2Cl2-0. 1 MTBAP. The complexes exemplify the first adduct of the tetracarboxylatodiruthenium (II,III) core having N-donor ligands
Resumo:
The crystal structure of Pb3BiV3O12 was solved using single-crystal X-ray diffraction technique. The compound crystallizes in the cubic system View the MathML source (No. 220) with eulytite structure with a = 10.7490(7) Å, V = 1241.95(14) Å3 and Z = 4. The final R1 value of 0.0198 (wR2=0.0384) was achieved for 359 independent reflections during the structure refinement. The Pb2+ and Bi3+ cations occupy the special position (16c) while the oxygen anions occupy the general position (48e) in the crystal structure. Unlike many other eulytite compounds, all the crystallographic positions are fully occupied. The structure consists of edge-shared Pb/Bi octahedra linked at the corners to independent [VO4]3− tetrahedra units, generating a eulytite-type network in the crystal lattice.
Resumo:
Reaction between PdCl2 and 1-alkyl-2-(arylazo)imidazole (RaaiR') or 1-alkyl-2-(naphthyl-alpha/beta-azo)imidazole (alpha/beta-NaiR') under reflux in ethanol has isolated complexes of compositions Pd(RaaiR')(2)Cl-2 (5, 6) and Pd(alpha/beta-NaiR')(2)Cl-2 (7, 8). The X-ray structure determination of one of the molecules, Pd(alpha-NaiBz)(2)Cl-2 (7c), has reported a trans-PdCl2 configuration, and alpha-NaiBz acts as monodentate N(imidazole) donor ligand. The spectral (IR, UV-vis, H-1 NMR) data support the structure. UV light irradiation (light source: Perkin-Elmer LS 55 spectrofluorimeter, Xenon discharge lamp, lambda = 360-396 nm) in a MeCN solution of the complexes shows E-to-Z isomerization of the coordinated azoimidazole unit. The reverse transformation, Z-to-E, is very slow with visible light irradiation. Quantum yields (phi(E-Z)) of E-to-Z isomerization are calculated, and phi is lower than that of the free ligand but comparable with those of Cd(II) and Hg(II) complexes of the same ligand. The Z-to-E isomerization is a thermally induced process. The activation energy (E-a) of Z-to-E isomerization is calculated by controlled-temperature experimentation. cis-Pd(azoimidazole)Cl-2 complexes (azomidazole acts as N(imidazole) and N(azo) Chelating ligand) do not respond upon light irradiation, which supports the idea that the presence of noncoordinated azo-N to make free azo (-N=N-) function is important to reveal photochromic activity. DFT calculation of Pd(alpha-NaiBz)(2)Cl-2 (7c) has suggested that the HOMO of the molecule is constituted of Pd (32%) and Cl (66%), and hence photo excitation may use the energy of Pd and Cl instead of that of the photofunctional -N=N-Ar motif; thus, the rate of photoisomerization and quantum yield decrease versus the free ligand values.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.
Resumo:
The structure and conformation of a second crystalline modification of 19-nortestosterone has been determined by X-ray methods. M r = 274, monoclinic P2 l, a=9.755(2), b= 11.467(3), c= 14.196(3)/L fl=101.07(2) ° , V=1558.4 (8) A 3, Z=4, Ox= I. 168 g cm -3, Mo Ka, 2 = 0.7107 ,/k, ~ = 0.80 cm -l, F(000) = 600, T= 300 K. R = 0.060 for 2158 observed reflections. The two molecules in the asymmetric unit show significant differences in the A-ring conformation from that of the previously reported form of the title compound [Precigoux, Busetta, Courseille & Hospital (1975). Acta Cryst. B31, 1527-1532]. The l a,2fl-half-chair conformation of the A ring increases its conformational freedom compared with testosterone.