783 resultados para Stock returns
Resumo:
Research has highlighted the adequacy of Markov regime-switching model to address dynamic behavior in long term stock market movements. Employing a purposed Extended regime-switching GARCH(1,1) model, this thesis further investigates the regime dependent nonlinear relationship between changes in oil price and stock market volatility in Saudi Arabia, Norway and Singapore for the period of 2001-2014. Market selection is prioritized to national dependency on oil export or import, which also rationalizes the fitness of implied bivariate volatility model. Among two regimes identified by the mean model, high stock market return-low volatility regime reflects the stable economic growth periods. The other regime characterized by low stock market return-high volatility coincides with episodes of recession and downturn. Moreover, results of volatility model provide the evidence that shocks in stock markets are less persistent during the high volatility regime. While accelerated oil price rises the stock market volatility during recessions, it reduces the stock market risk during normal growth periods in Singapore. In contrast, oil price showed no significant notable impact on stock market volatility of target oil-exporting countries in either of the volatility regime. In light to these results, international investors and policy makers could benefit the risk management in relation to oil price fluctuation.
Resumo:
Traditionally real estate has been seen as a good diversification tool for a stock portfolio due to the lower return and volatility characteristics of real estate investments. However, the diversification benefits of a multi-asset portfolio depend on how the different asset classes co-move in the short- and long-run. As the asset classes are affected by the same macroeconomic factors, interrelationships limiting the diversification benefits could exist. This master’s thesis aims to identify such dynamic linkages in the Finnish real estate and stock markets. The results are beneficial for portfolio optimization tasks as well as for policy-making. The real estate industry can be divided into direct and securitized markets. In this thesis the direct market is depicted by the Finnish housing market index. The securitized market is proxied by the Finnish all-sectors securitized real estate index and by a European residential Real Estate Investment Trust index. The stock market is depicted by OMX Helsinki Cap index. Several macroeconomic variables are incorporated as well. The methodology of this thesis is based on the Vector Autoregressive (VAR) models. The long-run dynamic linkages are studied with Johansen’s cointegration tests and the short-run interrelationships are examined with Granger-causality tests. In addition, impulse response functions and forecast error variance decomposition analyses are used for robustness checks. The results show that long-run co-movement, or cointegration, did not exist between the housing and stock markets during the sample period. This indicates diversification benefits in the long-run. However, cointegration between the stock and securitized real estate markets was identified. This indicates limited diversification benefits and shows that the listed real estate market in Finland is not matured enough to be considered a separate market from the general stock market. Moreover, while securitized real estate was shown to cointegrate with the housing market in the long-run, the two markets are still too different in their characteristics to be used as substitutes in a multi-asset portfolio. This implies that the capital intensiveness of housing investments cannot be circumvented by investing in securitized real estate.
Resumo:
This thesis discusses the basic problem of the modern portfolio theory about how to optimise the perfect allocation for an investment portfolio. The theory provides a solution for an efficient portfolio, which minimises the risk of the portfolio with respect to the expected return. A central feature for all the portfolios on the efficient frontier is that the investor needs to provide the expected return for each asset. Market anomalies are persistent patterns seen in the financial markets, which cannot be explained with the current asset pricing theory. The goal of this thesis is to study whether these anomalies can be observed among different asset classes. Finally, if persistent patterns are found, it is investigated whether the anomalies hold valuable information for determining the expected returns used in the portfolio optimization Market anomalies and investment strategies based on them are studied with a rolling estimation window, where the return for the following period is always based on historical information. This is also crucial when rebalancing the portfolio. The anomalies investigated within this thesis are value, momentum, reversal, and idiosyncratic volatility. The research data includes price series of country level stock indices, government bonds, currencies, and commodities. The modern portfolio theory and the views given by the anomalies are combined by utilising the Black-Litterman model. This makes it possible to optimise the portfolio so that investor’s views are taken into account. When constructing the portfolios, the goal is to maximise the Sharpe ratio. Significance of the results is studied by assessing if the strategy yields excess returns in a relation to those explained by the threefactormodel. The most outstanding finding is that anomaly based factors include valuable information to enhance efficient portfolio diversification. When the highest Sharpe ratios for each asset class are picked from the test factors and applied to the Black−Litterman model, the final portfolio results in superior riskreturn combination. The highest Sharpe ratios are provided by momentum strategy for stocks and long-term reversal for the rest of the asset classes. Additionally, a strategy based on the value effect was highly appealing, and it basically performs as well as the previously mentioned Sharpe strategy. When studying the anomalies, it is found, that 12-month momentum is the strongest effect, especially for stock indices. In addition, a high idiosyncratic volatility seems to be positively correlated with country indices on stocks.
Resumo:
Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.
Resumo:
An exchange traded fund (ETF) is a financial instrument that tracks some predetermined index. Since their initial establishment in 1993, ETFs have grown in importance in the field of passive investing. The main reason for the growth of the ETF industry is that ETFs combine benefits of stock investing and mutual fund investing. Although ETFs resemble mutual funds in many ways, also many differences occur. In addition, ETFs not only differ from mutual funds but also differ among each other. ETFs can be divided into two categories, i.e. market capitalisation ETFs and fundamental (or strategic) ETFs, and further into subcategories depending on their fundament basis. ETFs are a useful tool for diversification especially for a long-term investor. Although the economic importance of ETFs has risen drastically during the past 25 years, the differences and risk-return characteristics of fundamental ETFs have yet been rather unstudied area. In effect, no previous research on market capitalisation and fundamental ETFs was found during the research process. For its part, this thesis seeks to fill this research gap. The studied data consist of 50 market capitalisation ETFs and 50 fundamental ETFs. The fundaments, on which the indices that the fundamental ETFs track, were not limited nor segregated into subsections. The two types of ETFs were studied at an aggregate level as two different research groups. The dataset ranges from June 2006 to December 2014 with 103 monthly observations. The data was gathered using Bloomberg Terminal. The analysis was conducted as an econometric performance analysis. In addition to other econometric measures, the methods that were used in the performance analysis included modified Value-at-Risk, modified Sharpe ratio and Treynor ratio. The results supported the hypothesis that passive market capitalisation ETFs outperform active fundamental ETFs in terms of risk-adjusted returns, though the difference is rather small. Nevertheless, when taking into account the higher overall trading costs of the fundamental ETFs, the underperformance gap widens. According to the research results, market capitalisation ETFs are a recommendable diversification instrument for a long-term investor. In addition to better risk-adjusted returns, passive ETFs are more transparent and the bases of their underlying indices are simpler than those of fundamental ETFs. ETFs are still a young financial innovation and hence data is scarcely available. On future research, it would be valuable to research the differences in risk-adjusted returns also between the subsections of fundamental ETFs.
Resumo:
Since different stock markets have become more integrated during 2000s, investors need new asset classes in order to gain diversification benefits. Commodities have become popular to invest in and thus it is important to examine whether the investors should use commodities as a part for portfolio diversification. This master’s thesis examines the dynamic relationship between Finnish stock market and commodities. The methodology is based on Vector Autoregressive models (VAR). The long-run relationship between Finnish stock market and commodities is examined with Johansen cointegration while short-run relationship is examined with VAR models and Granger causality test. In addition, impulse response test and forecast error variance decomposition are employed to strengthen the results of short-run relationship. The dynamic relationships might change under different market conditions. Thus, the sample period is divided into two sub-samples in order to reveal whether the dynamic relationship varies under different market conditions. The results show that Finnish stock market has stable long-run relationship with industrial metals, indicating that there would not be diversification benefits among the industrial metals. The long-run relationship between Finnish stock market and energy commodities is not as stable as the long-run relationship between Finnish stock market and industrial metals. Long-run relationship was found in the full sample period and first sub-sample which indicate less room for diversification. However, the long-run relationship disappeared in the second sub-sample which indicates diversification benefits. Long-run relationship between Finnish stock market and agricultural commodities was not found in the full sample period which indicates diversification benefits between the variables. However, long-run relationship was found from both sub-samples. The best diversification benefits would be achieved if investor invested in precious metals. No long-run relationship was found from either sample. In the full sample period OMX Helsinki had short-run relationship with most of the energy commodities and industrial metals and the causality was mostly running from equities to commodities. During the first sub period the number of short-run relationships and causality shrunk but during the crisis period the number of short-run relationships and causality increased. The most notable result found was unidirectional causality from gold to OMX Helsinki during the crisis period.
Resumo:
This thesis investigates the performance of value and momentum strategies in the Swedish stock market during the 2000-2015 sample period. In addition the performance of some value and value-momentum combination is examined. The data consists of all the publicly traded companies in the Swedish stock market between 2000-2015. P/E, P/B, P/S, EV/EBITDA, EV/S ratios and 3, 6 and 12 months value criteria are used in the portfolio formation. In addition to single selection criteria, combination of P/E and P/B (aka. Graham number), the average ranking of the five value criteria and EV/EBIT – 3 month momentum combination is used as a portfolio-formation criterion. The stocks are divided into quintile portfolios based on each selection criterion. The portfolios are reformed once a year using the April’s price information and previous year’s financial information. The performance of the portfolios is examined based on average annual return, the Sharpe ratio and the Jensen alpha. The results show that the value-momentum combination is the best-performing portfolio both during the whole sample period and during the sub-period that started after the 2007-financial crisis.