839 resultados para Spontaneous generation
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Resumo:
This study examines Smart Grids and distributed generation, which is connected to a single-family house. The distributed generation comprises small wind power plant and solar panels. The study is done from the consumer point of view and it is divided into two parts. The first part presents the theoretical part and the second part presents the research part. The theoretical part consists of the definition of distributed generation, wind power, solar energy and Smart Grids. The study examines what the Smart Grids will enable. New technology concerning Smart Grids is also examined. The research part introduces wind and sun conditions from two countries. The countries are Finland and Germany. According to the wind and sun conditions of these two countries, the annual electricity production from wind power plant and solar panels will be calculated. The costs of generating electricity from wind and solar energy are calculated from the results of annual electricity productions. The study will also deal with feed-in tariffs, which are supporting systems for renewable energy resources. It is examined in the study, if it is cost-effective for the consumers to use the produced electricity by themselves or sell it to the grid. Finally, figures for both countries are formed. The figures include the calculated cost of generating electricity from wind power plant and solar panels, retail and wholesale prices and feed-in tariffs. In Finland, it is not cost-effective to sell the produced electricity to the grid, before there are support systems. In Germany, it is cost-effective to sell the produced electricity from solar panels to the grid because of feed-in tariffs. On the other hand, in Germany it is cost-effective to produce electricity from wind to own use because the retail price is higher than the produced electricity from wind.
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS) micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.
Resumo:
Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass) of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.
Resumo:
Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm) compared with those obtained by spontaneous emulsification (190 to 310 nm). The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.
Resumo:
In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.
Resumo:
This paper summarizes the misrepresentations related to Gibbs energy in general chemistry textbooks. These misrepresentations arise from a problem in the terminology textbooks use. Thus, after reviewing the proper definition of each of the terms analyzed, we present two problems to exemplify the correct treatment of the quantities involved, which may help in the discussion and clarification of the misleading conventions and assumptions reported in this study.
Resumo:
Työn tarkoituksena on selvittää miten sähköistä kysynnän herättämistä voidaan hyödyntää Mantsinen Group Ltd Oy:ssä siten, että sillä pystytään tukemaan myyntiä. Lisäksi sähköisen kysynnän herättämisen tehokkuutta tutkitaan, jotta saadaan selville onko se kannattavaa ja kuinka hyvin se sopii yritykselle. Kysynnän herättämisjärjestelmän käyttö on määritelty kirjallisuuteen perustuen ja sen jälkeen järjestelmän käyttö on aloitettu. Sähköisen kysynnän herättämisen tehokkuus mitataan kolmen kuukauden tarkastelujakson todellisella datalla. Sähköisen kysynnän herättämisen sopivuutta arvioidaan perustuen sen kustannustehokkuuteen ja tuloksiin. Työn tulokset osoittavat, että sähköinen kysynnän herättäminen on kannattavaa ja se sopii yritykselle. Sillä voidaan parhaiten tukea myyntiä järjestelmän tuottaessa laadukkaita myyntimahdollisuuksia tasaisena virtana myynnille. Myös aiemmin manuaalisesti tehtyjä työtehtäviä voidaan automatisoida ja näin vähentää myyjien työtaakkaa.
Resumo:
In this Thesis the interaction of an electromagnetic field and matter is studied from various aspects in the general framework of cold atoms. Our subjects cover a wide spectrum of phenomena ranging from semiclassical few-level models to fully quantum mechanical interaction with structured reservoirs leading to non-Markovian open quantum system dynamics. Within closed quantum systems, we propose a selective method to manipulate the motional state of atoms in a time-dependent double-well potential and interpret the method in terms of adiabatic processes. Also, we derive a simple wave-packet model, based on distributions of generalized eigenstates, explaining the finite visibility of interference in overlapping continuous-wave atom lasers. In the context of open quantum systems, we develop an unraveling of non-Markovian dynamics in terms of piecewise deterministic quantum jump processes confined in the Hilbert space of the reduced system - the non-Markovian quantum jump method. As examples, we apply it for simple 2- and 3-level systems interacting with a structured reservoir. Also, in the context of ion-cavity QED we study the entanglement generation based on collective Dicke modes in experimentally realistic conditions including photonic losses and an atomic spontaneous decay.
Resumo:
Introduction of second-generation biofuels is an essential factor for meeting the EU’s 2020 targets for renewable energy in the transport sector and enabling the more ambitious targets for 2030. Finland’s forest industry is strongly involved in the development and commercialising of second-generation biofuel production technologies. The goal of this paper is to provide a quantified insight into Finnish prospects for reaching the 2020 national renewable energy targets and concurrently becoming a large-scale producer of forest biomass based second-generation biofuels feeding the increasing demand in European markets. The focus of the paper is on assessing the potential for utilising forest biomass for liquid biofuels up to 2020. In addition, technological issues related to the production of second-generation biofuels were reviewed. Finland has good opportunities to realise a scenario to meet 2020 renewable energy targets and for large-scale production of wood based biofuels. In 2020, biofuel production from domestic forest biomass in Finland may reach nearly a million ton (40 PJ). With the existing biofuel production capacity (20 PJ/yr) and national biofuel consumption target (25 PJ) taken into account, the potential net export of biofuels from Finland in 2020 would be 35 PJ, corresponding to 2–3% of European demand. Commercialisation of second-generation biofuel production technologies, high utilisation of the sustainable harvesting potential of Finnish forest biomass, and allocation of a significant proportion of the pulpwood harvesting potential for energy purposes are prerequisites for this scenario. Large-scale import of raw biomass would enable remarkably greater biofuel production than is described in this paper.
Resumo:
The purpose of this study was to simulate and to optimize integrated gasification for combine cycle (IGCC) for power generation and hydrogen (H2) production by using low grade Thar lignite coal and cotton stalk. Lignite coal is abundant of moisture and ash content, the idea of addition of cotton stalk is to increase the mass of combustible material per mass of feed use for the process, to reduce the consumption of coal and to increase the cotton stalk efficiently for IGCC process. Aspen plus software is used to simulate the process with different mass ratios of coal to cotton stalk and for optimization: process efficiencies, net power generation and H2 production etc. are considered while environmental hazard emissions are optimized to acceptance level. With the addition of cotton stalk in feed, process efficiencies started to decline along with the net power production. But for H2 production, it gave positive result at start but after 40% cotton stalk addition, H2 production also started to decline. It also affects negatively on environmental hazard emissions and mass of emissions/ net power production increases linearly with the addition of cotton stalk in feed mixture. In summation with the addition of cotton stalk, overall affects seemed to negative. But the effect is more negative after 40% cotton stalk addition so it is concluded that to get maximum process efficiencies and high production less amount of cotton stalk addition in feed is preferable and the maximum level of addition is estimated to 40%. Gasification temperature should keep lower around 1140 °C and prefer technique for studied feed in IGCC is fluidized bed (ash in dry form) rather than ash slagging gasifier