863 resultados para Spatial Durbin model
Resumo:
Land cover data derived from satellites are commonly used to prescribe inputs to models of the land surface. Since such data inevitably contains errors, quantifying how uncertainties in the data affect a model’s output is important. To do so, a spatial distribution of possible land cover values is required to propagate through the model’s simulation. However, at large scales, such as those required for climate models, such spatial modelling can be difficult. Also, computer models often require land cover proportions at sites larger than the original map scale as inputs, and it is the uncertainty in these proportions that this article discusses. This paper describes a Monte Carlo sampling scheme that generates realisations of land cover proportions from the posterior distribution as implied by a Bayesian analysis that combines spatial information in the land cover map and its associated confusion matrix. The technique is computationally simple and has been applied previously to the Land Cover Map 2000 for the region of England and Wales. This article demonstrates the ability of the technique to scale up to large (global) satellite derived land cover maps and reports its application to the GlobCover 2009 data product. The results show that, in general, the GlobCover data possesses only small biases, with the largest belonging to non–vegetated surfaces. In vegetated surfaces, the most prominent area of uncertainty is Southern Africa, which represents a complex heterogeneous landscape. It is also clear from this study that greater resources need to be devoted to the construction of comprehensive confusion matrices.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
Voluntary physical activity improves memory and learning ability in rodents, whereas status epilepticus has been associated with memory impairment. Physical activity and seizures have been associated with enhanced hippocampal expression of BDNF, indicating that this protein may have a dual role in epilepsy. The influence of voluntary physical activity on memory and BDNF expression has been poorly studied in experimental models of epilepsy. In this paper, we have investigated the effect of voluntary physical activity on memory and BDNF expression in mice with pilocarpine-incluced epilepsy. Male Swiss mice were assigned to four experimental groups: pilocarpine sedentary (PS), pilocarpine runners (PRs), saline sedentary (SS) and saline runners (SRs). Two days after pilocarpine-induced status epilepticus, the affected mice (PR) and their running controls (SR) were housed with access to a running wheel for 28 days. After that, the spatial memory and the expression of the precursor and mature forms of hippocampal BDNF were assessed. PR mice performed better than PS mice in the water maze test. In addition, PR mice had a higher amount of mature BDNF (14 kDa) relative to the total BDNF (14 kDa + 28 kDa + 32 kDa forms) content when compared with PS mice. These results show that voluntary physical activity improved the spatial memory and increased the hippocampal content of mature BDNF of mice with pilocarpine-induced status epilepticus. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved
Resumo:
[1] The retrieval of aerosol optical depth (Ta) over land by satellite remote sensing is still a challenge when a high spatial resolution is required. This study presents a tool that uses satellite measurements to dynamically identify the aerosol optical model that best represents the optical properties of the aerosol present in the atmosphere. We use aerosol critical reflectance to identify the single scattering albedo of the aerosol layer. Two case studies show that the Sao Paulo region can have different aerosol properties and demonstrates how the dynamic methodology works to identify those differences to obtain a better T a retrieval. The methodology assigned the high single scattering albedo aerosol model (pi o( lambda = 0.55) = 0.90) to the case where the aerosol source was dominated by biomass burning and the lower pi(o) model (pi(o) (lambda = 0.55) = 0.85) to the case where the local urban aerosol had the dominant influence on the region, as expected. The dynamic methodology was applied using cloud-free data from 2002 to 2005 in order to retrieve Ta with Moderate Resolution Imaging Spectroradiometer ( MODIS). These results were compared with collocated data measured by AERONET in Sao Paulo. The comparison shows better results when the dynamic methodology using two aerosol optical models is applied (slope 1.06 +/- 0.08 offset 0.01 +/- 0.02 r(2) 0.6) than when a single and fixed aerosol model is used (slope 1.48 +/- 0.11 and offset - 0.03 +/- 0.03 r(2) 0.6). In conclusion the dynamical methodology is shown to work well with two aerosol models. Further studies are necessary to evaluate the methodology in other regions and under different conditions.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility. Drezner and Drezner (2006, 2007) provide three arguments on why this assumption might be incorrect, and they introduce the extended the gravity p-median model to relax the assumption. We favour the gravity p-median model, but we note that in an applied setting, Drezner and Drezner’s arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.
Resumo:
We present a new version of the hglm package for fittinghierarchical generalized linear models (HGLM) with spatially correlated random effects. A CAR family for conditional autoregressive random effects was implemented. Eigen decomposition of the matrix describing the spatial structure (e.g. the neighborhood matrix) was used to transform the CAR random effectsinto an independent, but heteroscedastic, gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR model.This gives a computationally efficient algorithm for moderately sized problems (e.g. n<5000).
Resumo:
Millions of unconscious calculations are made daily by pedestrians walking through the Colby College campus. I used ArcGIS to make a predictive spatial model that chose paths similar to those that are actually used by people on a regular basis. To make a viable model of how most travelers choose their way, I considered both the distance required and the type of traveling surface. I used an iterative process to develop a scheme for weighting travel costs which resulted in accurate least-cost paths to be predicted by ArcMap. The accuracy was confirmed when the calculated routes were compared to satellite photography and were found to overlap well-worn “shortcuts” taken between the paved paths throughout campus.
Resumo:
The reliable evaluation of the flood forecasting is a crucial problem for assessing flood risk and consequent damages. Different hydrological models (distributed, semi-distributed or lumped) have been proposed in order to deal with this issue. The choice of the proper model structure has been investigated by many authors and it is one of the main sources of uncertainty for a correct evaluation of the outflow hydrograph. In addition, the recent increasing of data availability makes possible to update hydrological models as response of real-time observations. For these reasons, the aim of this work it is to evaluate the effect of different structure of a semi-distributed hydrological model in the assimilation of distributed uncertain discharge observations. The study was applied to the Bacchiglione catchment, located in Italy. The first methodological step was to divide the basin in different sub-basins according to topographic characteristics. Secondly, two different structures of the semi-distributed hydrological model were implemented in order to estimate the outflow hydrograph. Then, synthetic observations of uncertain value of discharge were generated, as a function of the observed and simulated value of flow at the basin outlet, and assimilated in the semi-distributed models using a Kalman Filter. Finally, different spatial patterns of sensors location were assumed to update the model state as response of the uncertain discharge observations. The results of this work pointed out that, overall, the assimilation of uncertain observations can improve the hydrologic model performance. In particular, it was found that the model structure is an important factor, of difficult characterization, since can induce different forecasts in terms of outflow discharge. This study is partly supported by the FP7 EU Project WeSenseIt.
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to estimate the spatial distribution of work accident risk in the informal work market in the urban zone of an industrialized city in southeast Brazil and to examine concomitant effects of age, gender, and type of occupation after controlling for spatial risk variation. The basic methodology adopted was that of a population-based case-control study with particular interest focused on the spatial location of work. Cases were all casual workers in the city suffering work accidents during a one-year period; controls were selected from the source population of casual laborers by systematic random sampling of urban homes. The spatial distribution of work accidents was estimated via a semiparametric generalized additive model with a nonparametric bidimensional spline of the geographical coordinates of cases and controls as the nonlinear spatial component, and including age, gender, and occupation as linear predictive variables in the parametric component. We analyzed 1,918 cases and 2,245 controls between 1/11/2003 and 31/10/2004 in Piracicaba, Brazil. Areas of significantly high and low accident risk were identified in relation to mean risk in the study region (p < 0.01). Work accident risk for informal workers varied significantly in the study area. Significant age, gender, and occupational group effects on accident risk were identified after correcting for this spatial variation. A good understanding of high-risk groups and high-risk regions underpins the formulation of hypotheses concerning accident causality and the development of effective public accident prevention policies.
Resumo:
The bubble crab Dotilla fenestrata forms very dense populations on the sand flats of the eastern coast of Inhaca Island, Mozambique, making it an interesting biological model to examine spatial distribution patterns and test the relative efficiency of common sampling methods. Due to its apparent ecological importance within the sandy intertidal community, understanding the factors ruling the dynamics of Dotilla populations is also a key issue. In this study, different techniques of estimating crab density are described, and the trends of spatial distribution of the different population categories are shown. The studied populations are arranged in discrete patches located at the well-drained crests of nearly parallel mega sand ripples. For a given sample size, there was an obvious gain in precision by using a stratified random sampling technique, considering discrete patches as strata, compared to the simple random design. Density average and variance differed considerably among patches since juveniles and ovigerous females were found clumped, with higher densities at the lower and upper shore levels, respectively. Burrow counting was found to be an adequate method for large-scale sampling, although consistently underestimating actual crab density by nearly half. Regression analyses suggested that crabs smaller than 2.9 mm carapace width tend to be undetected in visual burrow counts. A visual survey of sampling plots over several patches of a large Dotilla population showed that crab density varied in an interesting oscillating pattern, apparently following the topography of the sand flat. Patches extending to the lower shore contained higher densities than those mostly covering the higher shore. Within-patch density variability also pointed to the same trend, but the density increment towards the lowest shore level varied greatly among the patches compared.
Resumo:
A lagarta-do-cartucho, Spodoptera frugiperda (J.E. Smith), é uma das principais pragas do milho nas Américas. O estudo de sua distribuição espacial é fundamental para a utilização de estratégias de controle, otimização de técnicas de amostragens, determinação de danos econômicos e incorporação de um programa de agricultura de precisão. em uma área cultivada com milho foram realizadas amostragens com intervalo semanal, correspondendo ao estádio vegetativo que compreende desde a germinação até o pendoamento. Foram amostradas 10 plantas ao acaso por parcela, no total de 2000 plantas em cada amostragem. A produtividade foi obtida através da colheita de todas as parcelas que eram pesadas separadamente no campo e em cada parcela foram coletadas 15 espigas aleatoriamente para estimar o comprimento e o diâmetro médio. As análises espaciais, utilizando geoestatística, mostraram que o modelo esférico apresentou o melhor ajuste às lagartas pequenas. À medida que as lagartas foram se desenvolvendo sua distribuição foi tornando aleatória, representada por um modelo ajustado por uma reta, não tendo sido detectado nenhum tipo de dependência espacial nos pontos de amostragem. A produtividade e o diâmetro e comprimento da espiga foram descritos por modelos esféricos, indicando uma variabilidade espacial nos parâmetros de produtividade na área cultivada. A geoestatística mostrou-se promissora para a aplicação de métodos precisos no controle integrado de pragas.