886 resultados para Sodium fluoride (NaF)
Resumo:
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Resumo:
Dans le néphron distal sensible à l'aldostérone, le récepteur aux minéralocorticoïdes (RM) et le récepteur aux glucocorticoids (RG) sont exprimés et peuvent être liés et activés par l'aldostérone et le Cortisol, respectivement. La réabsorption rénale de sodium est principalement contrôlée par le RM. Cependant, des modèles expérimentaux in vitro et in vivo suggèrent que le RG pourrait également jouer un rôle dans le transport rénal du sodium. Afin d'étudier l'implication du RG et/ou du RM exprimés dans les cellules épithéliales adultes dans le transport rénal du sodium, nous avons généré deux modèles de souris, dans lesquelles l'expression du RG (Nr3c1Pax8/LC1) ou du RM (Nr3c2Pax8/LC1) peut être abolie de manière inductible et cela spécifiquement dans les tubules rénaux. Les souris déficientes pour le gène du RM survivent mais développent un phénotype sévère de PHA-1, caractérisé par un retard de croissance, une augmentation des niveaux urinaires de Na+, une diminution de la concentration du Na+ dans le plasma, une hyperkaliémie et une augmentation des niveaux d'aldostérone plasmatique. Ce phénotype empire et devient létal lorsque les souris sont nourries avec une diète déficiente en sodium. Les niveaux d'expression en protéine de NCC, de la forme phosphorylée de NCC et de aENaC sont diminués, alors que l'expression en ARN messager et en protéine du RG est augmentée. Une diète riche en Na+ et pauvre en K+ ne corrige pas la concentration élevée d'aldostérone dans le plasma pour la ramener à des niveaux conformes, mais est suffisante pour corriger la perte de poids et les niveaux anormaux des électrolytes dans le plasma et l'urine. -- In the aldosterone-sensitive distal nephron, both the mineralocorticoid (MR) and the glucocorticoid (GR) receptor are expressed. They can be bound and activated by aldosterone and Cortisol, respectively. Renal Na+ reabsorption is mainly controlled by MR. However, in vitro and in vivo experimental models suggest that GR may play a role in renal Na+ transport. Therefore, to investigate the implication of MR and/or GR in adult epithelial cells in renal sodium transport, we generated inducible renal tubule- specific MR (Nr3c2Pax8/LC1) and GR (Nr3c1Pax8/LC1) knockout mice. MR-deficient mice survived but developed a severe PHA-1 phenotype with failure to thrive, higher urinary Na+, decreased plasma Na+ levels, hyperkalemia and higher levels of plasma aldosterone. This phenotype further worsened and became lethal under a sodium-deficient diet. NCC protein expression and its phosphorylated form, as well as aENaC protein level were downregulated, whereas the mRNA and protein expression of GR was increased. A diet rich in Na+and low in K+ did not normalize plasma aldosterone to control levels, but was sufficient to restore body weight, plasma and urinary electrolytes. Upon switch to a Na+-deficient diet, GR-mutant mice exhibited transient increased urinary Na+ and decreased K+ levels, with transitory higher plasma K+ concentration preceded by a significant increase in plasma aldosterone levels within the 12 hours following diet switch. We found no difference in urinary aldosterone levels, plasma Na+ concentration and plasma corticosterone levels. Moreover, NHE3, NKCC2, NCC
Resumo:
Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.
Resumo:
Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses covered 675 regions classified as normal (236 RH, 232 RF, and 207 LV1). Results: Mean SUV for each skeletal region was 3.8, 5.4 and 14.4 for RH, RF, and LV1, respectively. As the studies were grouped according to mAs value, the mean SUV values were 3.8, 3.9 and 3.7 for 10, 20 and 30 mAs, respectively, in the RH region; 5.4, 5.5 and 5.4 for 10, 20 and 30 mAs, respectively, in the RF region; 13.8, 14.9 and 14.5 for 10, 20 and 30 mAs, respectively, in the LV1 region. Conclusion: The three tube current values yielded similar results for SUV calculation.
Resumo:
AbstractObjective:To evaluate the prevalence of exclusive lower extremity metastases, specifically in the femur and below the knee, observed at 18F-NaF PET/CT.Materials and Methods:One thousand consecutive PET/CT studies were retrospectively evaluated for the presence of exclusive uptake in lower extremities suggesting metastatic involvement. The presumptive diagnoses based on such uptakes were subsequently obtained by evaluation of other imaging studies.Results:No exclusive uptake suggestive of metastasis below the femur was observed in the present series. Exclusive uptake was observed in the proximal femur with a presumptive diagnosis of metastasis in two patients.Conclusion:The prevalence of exclusive metastasis below the femur is low and scanning from head to knees is appropriate in most cases.
Resumo:
Abstract Objective: To assess the cutoff values established by ROC curves to classify18F-NaF uptake as normal or malignant. Materials and Methods: PET/CT images were acquired 1 hour after administration of 185 MBq of18F-NaF. Volumes of interest (VOIs) were drawn on three regions of the skeleton as follows: proximal right humerus diaphysis (HD), proximal right femoral diaphysis (FD) and first vertebral body (VB1), in a total of 254 patients, totalling 762 VOIs. The uptake in the VOIs was classified as normal or malignant on the basis of the radiopharmaceutical distribution pattern and of the CT images. A total of 675 volumes were classified as normal and 52 were classified as malignant. Thirty-five VOIs classified as indeterminate or nonmalignant lesions were excluded from analysis. The standardized uptake value (SUV) measured on the VOIs were plotted on an ROC curve for each one of the three regions. The area under the ROC (AUC) as well as the best cutoff SUVs to classify the VOIs were calculated. The best cutoff values were established as the ones with higher result of the sum of sensitivity and specificity. Results: The AUCs were 0.933, 0.889 and 0.975 for UD, FD and VB1, respectively. The best SUV cutoffs were 9.0 (sensitivity: 73%; specificity: 99%), 8.4 (sensitivity: 79%; specificity: 94%) and 21.0 (sensitivity: 93%; specificity: 95%) for UD, FD and VB1, respectively. Conclusion: The best cutoff value varies according to bone region of analysis and it is not possible to establish one value for the whole body.
Resumo:
In this paper we describe the reduction by NaBH4 of some cyclopentanones containing an oxygenated function at the side chain position beta to the carbonyl group, both in the presence and in the absence of CeCl3. Some suggestions for the rationalization of the results are discussed, considering the stereochemical course of the reactions.
Resumo:
Sodium hypochlorite (NaOCl) is the most commonly used solution in root canal treatments, as it is a low-cost method that displays a very effective antimicrobial activity against microbiota of infected root canals. However, this solution can cause complications especially due to its cytotoxic features. When this solution is injected into the adjacent tissues, the patient usually experiences intense pain, and an urgent treatment should be implemented in order to prevent a long-term sequelae. This paper describes the clinical features of two patients that experienced an accidental extrusion of NaOCl after endodontic treatment of varying severity and with different treatments. Furthermore, it shows the long-term neurologic injuries that this type of accidents may cause and a treatment protocol for these situations will be suggested.
Resumo:
Työssä tutkittiin sinkin uutossa käytettävän di(2-etyyliheksyyli)fosforihappo (D2EHPA) -uuttoreagenssin faasikäyttäytymistä ja miten laimentimen koostumus, lämpötila ja orgaanisen faasin sinkkipitoisuus vaikuttavat faasitasapainoon. Laimentimen vaikutuksen havaittiin olevan pientä, kun taas lämpötilan nostaminen yli huoneenlämpötilan leventää faasidiagrammin yksifaasialuetta. Pienet orgaanisen faasin sinkkipitoisuudet eivät juuri vaikuta faasitasapainoon. Sinkin ja D2EHPA:n moolisuhteen ollessa välillä 0,1–0,2 kompleksin rakenne ilmeisesti muuttuu. Sinkkipitoisuuden kasvaessa yksifaasialue muodostuu pienemmillä ammoniakkimäärillä. Suurilla orgaanisen faasin sinkkipitoisuuksilla ja ammoniakkimäärillä muodostuu orgaanisen faasin ja vesifaasin välille kolmas nestefaasi. D2EHPA:n (40 p %) vesipitoisuuden ja viskositeetin pH riippuvuutta tutkittiin, kun laimentimena oli alifaattinen hiilivetyliuotin. Nostettaessa pH yli 3,5:n uuttoreagenssi alkoi muodostaa käänteismisellejä, jolloin orgaanisen faasin vesipitoisuus ja viskositeetti kasvoivat eksponentiaalisesti. Sinkin mukana uuttautuu epäpuhtauksia kuten Al3+, Co2+, Cu2+, Na+, Ni2+, Cl- ja F-. Takaisinuuton kautta epäpuhtaudet joutuvat talteenottoelektrolyysiin, jossa ne voivat vaikuttaa tuotteen laatuun ja laskea virtahyötysuhdetta. Tarkoituksena oli tutkia väheneekö epäpuhtauksien myötäuuttautuminen jollakin tietyllä sinkin latausasteella. Fluoridin ja kuparin uuttautumisen havaittiin vähenevän vasta, kun sinkin pitoisuus orgaanisessa faasissa oli yli 20 g/L lämpötilasta riippumatta. Fluoridi uuttautuu mahdollisesti alumiinikompleksina ja/tai fluorihappona. Koboltin ja nikkelin myötäuuttautumisen havaittiin vähenevän, kun sinkin latausaste oli yli 10 g/L. Natrium ja kloridi eivät myötäuuttautuneet.
Resumo:
This work presents a study on the dissolution of some commercial monometallic and non-supported deactivated catalysts in HF + H2O2 mixtures (and, eventually, other media) under mild experimental conditions, after a previous oxidation step. The samples were neither crushed nor grinded. The best experimental conditions were dependent on the nature of the support and of the active phase. For example, the Pt/Al2O3 catalyst was dissolved in about 10 minutes, without agitation and heating; however, dissolution of the Pd/Al2O3, Ni/Al2O3, Ni/SiO2, Cu/Al2O3 and V2O5 samples required a temperature of 60 ºC and an agitation of 400 rpm. A careful addition of a NaOH solution allowed a quantitative precipitation of aluminium as criolite (Na3AlF6) or precipitation of Si as Na2SiF6; NaF was obtained as a by-product. As expected, processing of Pd/C, V2O5 and CuO.Cr2O3 samples was relatively simple. Metals recovery from catalysts reached a quantitative level in all samples studied; it is particularly interesting that platinum and palladium could be easily recovered in a single step process, thus separing them from aluminium.
Resumo:
Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation
Resumo:
The effect of pork fat reduction (from 44% to 20% final fat content) and its partial substitution by sunflower oil (3% addition) on the physicochemical, instrumental and sensory properties throughout storage time of small caliber non-acid fermented sausages (fuet type) with reduced sodium content (with partial substitution of NaCl by KCl and K-lactate) and without direct addition of nitrate and nitrite (natural nitrate source used instead), was studied. Results showed that sausages with reduced fat (10% initial fat content) and with acceptable sensory characteristics can be obtained by adding to the shoulder lean (8% fat content) during the grinding, either 3.3% backfat (3% fat content) or 3% sunflower oil, both previously finely comminuted with lean. Furthermore, sunflower oil showed to be suitable for partial pork backfat substitution in very lean fermented sausages, conferring desirable sensory properties similar to those of sausages with standard fat content. The sensory quality of the sausages was maintained after three-month cold storage in modified atmosphere.
Resumo:
This work presents two recycling processes for spent Li/MnO2 batteries. After removal of the solvent under vacuum the cathode + anode + electrolyte was submitted to one of the following procedures: (a) it was calcined (500 ºC, 5 h) and the calcined solid was submitted to solvent extraction with water in order to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Manganese was recovered as sulfate; (b) the solid was treated with potassium hydrogeno sulfate (500 ºC, 5 h). The solid was dissolved in water and the resulting solution was added dropwise to sodium hydroxide. Manganese was recovered as dioxide. The residual solution was treated with potassium fluoride in order to precipitate lithium fluoride.