956 resultados para Simulated annealing (Matemática)
Resumo:
Bycatch, or the incidental catch of nontarget organisms during fi shing operations, is a major issue in U.S. shrimp trawl fisheries. Because bycatch is typically discarded at sea, total bycatch is usually estimated by extrapolating from an observed bycatch sample to the entire fleet with either mean-per-unit or ratio estimators. Using both field observations of commercial shrimp trawlers and computer simulations, I compared five methods for generating bycatch estimates that were used in past studies, a mean-per-unit estimator and four forms of the ratio estimator, respectively: 1) the mean fish catch per unit of effort, where unit effort was a proxy for sample size, 2) the mean of the individual fish to shrimp ratios, 3) the ratio of mean fish catch to mean shrimp catch, 4) the mean of the ratios of fish catch per time fished (a variable measure of effort), and 5) the ratio of mean fish catch per mean time fished. For field data, different methods used to estimate bycatch of Atlantic croaker, spot, and weakfish yielded extremely different results, with no discernible pattern in the estimates by method, geographic region, or species. Simulated fishing fleets were used to compare bycatch estimated by the fi ve methods with “actual” (simulated) bycatch. Simulations were conducted by using both normal and delta lognormal distributions of fish and shrimp and employed a range of values for several parameters, including mean catches of fish and shrimp, variability in the catches of fish and shrimp, variability in fishing effort, number of observations, and correlations between fish and shrimp catches. Results indicated that only the mean per unit estimators provided statistically unbiased estimates, while all other methods overestimated bycatch. The mean of the individual fish to shrimp ratios, the method used in the South Atlantic Bight before the 1990s, gave the most biased estimates. Because of the statistically significant two- and 3-way interactions among parameters, it is unlikely that estimates generated by one method can be converted or corrected to estimates made by another method: therefore bycatch estimates obtained with different methods should not be compared directly.
Resumo:
I simulated somatic growth and accompanying otolith growth using an individual-based bioenergetics model in order to examine the performance of several back-calculation methods. Four shapes of otolith radius-total length relations (OR-TL) were simulated. Ten different back-calculation equations, two different regression models of radius length, and two schemes of annulus selection were examined for a total of 20 different methods to estimate size at age from simulated data sets of length and annulus measurements. The accuracy of each of the twenty methods was evaluated by comparing the back-calculated length-at-age and the true length-at-age. The best back-calculation technique was directly related to how well the OR-TL model fitted. When the OR-TL was sigmoid shaped and all annuli were used, employing a least squares linear regression coupled with a log-transformed Lee back-calculation equation (y-intercept corrected) resulted in the least error; when only the last annulus was used, employing a direct proportionality back-calculation equation resulted in the least error. When the OR-TL was linear, employing a functional regression coupled with the Lee back-calculation equation resulted in the least error when all annuli were used, and also when only the last annulus was used. If the OR-TL was exponentially shaped, direct substitution into the fitted quadratic equation resulted in the least error when all annuli were used, and when only the last annulus was used. Finally, an asymptotically shaped OR-TL was best modeled by the individually corrected Weibull cumulative distribution function when all annuli were used, and when only the last annulus was used.